
CYPRUS INTERNATIONAL
UNIVERSITY

FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

AI PROSTHETIC HAND CONTROL VIA THE
PERIPHERAL NERVOUS SYSTEM

By

ABDELRAHMAN OMER

ABDELRAHMAN KHALAFALLA

MARIA RAJABALI

MELEK NUR KOÇ

HIBA BENKADDOUR

July, 2024

Nicosia, NORTH CYPRUS

CYPRUS INTERNATIONAL
UNIVERSITY

FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

AI PROSTHETIC HAND CONTROL VIA THE
PERIPHERAL NERVOUS SYSTEM

By

ABDELRAHMAN OMER

ABDELRAHMAN KHALAFALLA

MARIA RAJABALI

MELEK NUR KOÇ

HIBA BENKADDOUR

July, 2024

Nicosia, NORTH CYPRUS

AI PROSTHETIC HAND CONTROL VIA THE PERIPHERAL NERVOUS

SYSTEM

By

ABDELRAHMAN OMER

ABDELRAHMAN KHALAFALLA

MARIA RAJABALI

MELEK NUR KOÇ

HIBA BENKADDOUR

DATE OF APPROVAL: 24 July 2024

APPROVED BY:

ASST. PROF. DR. ZİYA DEREBOYLU

ASSOC. PROF. DR.NAHIT RiZANER

ACKNOWLEDGEMENTS

We extend our sincere appreciation to our Supervisor’s Asst. Prof. Dr.
ZİYA DEREBOYLU and Assoc. Prof. Dr. NAHIT RIZANER , for their
continuous guidance, valuable insights, and unwavering support throughout this
journey. Their expertise and constructive feedback have been instrumental in
shaping the success of our project.

We are also grateful to our professors and mentors at Cyprus International
University for equipping us with the knowledge and skills necessary to under-
take this project. Their encouragement and dedication have greatly contributed
to our learning experience.

A special thanks to our families and friends for their endless support, pa-
tience, and motivation. Their encouragement has been a source of strength and
inspiration throughout this journey.

Our sincere thanks go to our entire team for their dedication and collabora-
tion. Each member brought unique skills and perspectives, contributing to the
successful integration of electronic and software systems. This project would
not have been possible without their united commitment and hard work.

This project is a testament to the collective effort and support of everyone
involved. Thank you all for being part of this journey.

I

ABSTRACT

Globally there are over 1 million limb amputations every year, one every 30
seconds. Having an access to prosthetic limbs shouldn’t be based on income
because this can happen to any of us or to our loved ones, in 30 seconds. This
project aims to solve the non-functionality and high cost of prosthetic hands
on the market. The prosthetic hand design is three-channeled (sEMG) and 3-D
printed. The acquisition system of the dataset consists of Myoware 2.0, Arduino
Uno microcontroller, and a Python program. Sensors are connected to 3 muscles
(Brachioradialis, Flexor Carpi Ulnaris, and Flexor Carpi Radialis) and Arduino
Uno, and this is connected to Raspberry Pi which is connected to the 3-D printed
hand is able to make rest, fist, paper, OK gestures.

The 3-D printed hand design consists of 6 servo motors (one for thumb ro-
tation) and a servo driver that controls the fingers. Whenever the patient does a
gesture the fishing lines are pulled and pushed by these motors. This system is
controlled by the Raspberry Pi and is powered by a LiPo battery. Its AI model
includes ANN and KNN comparisons. In the end, ANN with a 300ms window
was decided to be used due to its high accuracy and low prediction delay.

This project’s results have been just the beginning of achieving the initial aim
of the project. With more time and better compounds, it’s promising. It would
be customizable to each person’s specific limb shape and the residual muscles
available.

II

ÖZET

Küresel olarak her yıl, her otuz saniyede bir, 1 milyon kişi ampütasyon
oluyor. Prostetik uzuvlara erişim maddi gelire bağlı olmamalı çünkü bu, bize
veya sevdiğimiz birinin başına gelebilir, 30 saniye. Bu proje marketteki fonksiy-
onellikten uzak fakat yüksek fiyatlı prostetik elleri çözümlemeyi amaçlıyor. Pro-
jemiz üç kanallı (yüzey elektromiyografi sensörlü) ve 3-D baskılı prostetik el
tasasımına sahip. Veri toplama sistemimiz Myoware 2.0, Arduino Uno mikro-
denetleyici ve bir Python programından oluşmaktadır. Sensörler; 3 tane kasa
(Brachioradialis, Flexor Carpi Ulnaris, and Flexor Carpi Radialis) ve Arduno
Uno’ya bağlı ve bu ikisi de Raspberry Pi’ya bağlı, bu da 3-D baskılı ele bağlanarak
‘rest’, ‘fist’, ‘paper’, ‘OK’ hareketlerini gerçekleştirebiliyor. 3-D baskılı el
tasarımı 6 servo motor (biri baş parmak rotasyonu için) ve de parmakları kon-
trol eden servo sürücüsü içermekte. Hasta bir el işareti yapınca olta ipleri bu
motorlar tarafından çekilip itiyor. Bu system LiPo bataryasından güç alarak
Raspberry Pi tarafından kontrol ediliyor. Projemizin AI modeli ANN ve KNN’i
karşılaştırarak, nihayetinde yüksek doğruluk ve düşük tahmin süresi nedenleriyle
300ms pencereleme tekniği kullanılmaya karar verildi. Bu projenin neticeleri,
projemizin ilk amacının sadece bir başlangıcı oldu. Daha fazla zaman ve daha
iyi parçalarla umut verici. Eğer daha fazla zaman ve kaynaklarla devam edilirse,
kişinin geriye kalan uzuvunun şekline ve kaslarına göre özelleştirilebilir

III

Contents

1 Introduction 7

2 Literature Review 8
2.1 EMG signals . 10
2.2 EMG signal acquisition: . 11

3 REALISTIC CONSTRAINTS 13
3.1 Design Constraints . 13
3.2 Engineering Standards and Lifelong Learning 14
3.3 Economical Analysis . 14
3.4 Sustainability . 14
3.5 Ethical Issues . 15
3.6 Social and Political Issues . 16
3.7 Manufacturability . 16
3.8 Risk Management and Change Management 17
3.9 Usage Constraints . 17
3.10 Cost Analysis . 18

4 METHODOLOGY 19
4.1 Acquisition System . 19

4.1.1 Design . 19
4.1.2 Output Validation . 20

4.2 Data Acquisition . 21

1

4.2.1 Anatomical Background 21
4.2.2 Gesture Selection . 22

4.3 AI Model . 25
4.3.1 Control Configurations 25
4.3.2 Direct Control . 25
4.3.3 Pattern Recognition . 26

4.4 Data Preprocessing . 26
4.4.1 Windowing . 27
4.4.2 Threshold Function . 28
4.4.3 Feature Extraction . 30
4.4.4 Feature Normalization 33

4.5 Models . 34
4.5.1 K-Nearest Neighbors (kNN) 34
4.5.2 Artificial Neural Network (ANN): 36

4.6 Voting Mechanism . 38
4.7 Evaluation Metrics . 39
4.8 Software and Libraries Utilized 41
4.9 Design and Implementation . 43
4.10 Design and control . 47

4.10.1 Control mechanisms 47
4.10.2 3D Design . 47
4.10.3 Actuators and controllers 54

5 RESULTS AND DISCUSSION 64
5.1 Data Set and Data Validation 64
5.2 AI Model . 66

5.2.1 Threshold . 66

6 CONCLUSION & FUTURE WORK 81

2

List of Tables

3.1 Cost Analysis Table . 18

4.1 Motor Specifications . 55
4.2 Component Specifications . 58
4.3 Power Consumption of system 61

5.1 Summary of Threshold, Accuracy, and Cross-Validation Accu-
racy for Different Window Sizes 67

5.2 Feature Extraction Delays . 68

3

List of Figures

4.1 Acquisition System Design . 19
4.2 CSV file generation flowchart 20
4.3 Muscles used for signal acquisition 21
4.4 Rest to fist . 22
4.5 Rest to thumb . 22
4.6 Rest to index . 23
4.7 Rest to pinky . 23
4.8 Rest to ring . 23
4.9 Rest to middle . 23
4.10 Electrode Placements . 24
4.11 Overlapping and non-overlapping windows 27
4.12 Overlapping and non-overlapping windows 29
4.13 Slope Sign Changes (SSC) Formula 30
4.14 Visual Representation of K-Nearest Neighbors (kNN) Classifi-

cation . 35
4.15 Architecture of an Artificial Neural Network (ANN) 37
4.16 Majority Voting Mechanism for Model Aggregation 39
4.17 Structure of a Confusion Matrix and Associated Metrics 41
4.18 Mean Absolute Value (MAV) for Each Window for Fist Gesture 44
4.19 Pattern recognition pipeline . 45
4.20 Control mechanisms . 47
4.21 Palm & Wrist design . 49
4.22 Fingers & Thumb design . 50

4

4.23 Fishing Lines pulleys . 51
4.24 Forearm and Servo holder design 52
4.25 Circuit diagram . 54
4.26 MG995 Tower pro Servo motor 55
4.27 PCA 9685 servo driver . 56
4.28 Myoware sensor . 57
4.29 Configuration of Myoware sensor with Arduino uno 57
4.30 LM2596 DC-DC Buck Converter 58

5.1 Myoware Normalized Data 200s Rest-Fist 64
5.2 Normalized data,200s rest-fist 65
5.3 ROC Curve for Optimal Threshold Determination 67
5.4 kNN Cross-Validation Accuracies for 150ms Window Size . . . 69
5.5 kNN Cross-Validation Accuracies for 200ms Window Size . . . 69
5.6 kNN Cross-Validation Accuracies for 250ms Window Size . . . 69
5.7 kNN Cross-Validation Accuracies for 300ms Window Size . . . 70
5.8 kNN Accuracy vs Window Length 71
5.9 Artificial Neural Network Structure for EMG Signal Classification 73
5.10 ANN Accuracy vs Window Length 76
5.11 kNN vs ANN Accuracy for Different Window Lengths 76
5.12 ANN vs kNN Prediction Delay for different Window Lengths . . 78
5.13 Classifier Accuracy and Total Delay for Different Window Lengths 79

5

List of Code Blocks

6.0.1 Arduino Code For EMG Sampling 82
6.0.2 Arduino Code For EMG Sampling 83
6.0.3 EMG Data Collection Script 85
6.0.4 Data Normalization . 88
6.0.5 AI MODEL . 91

6

CHAPTER ONE
INTRODUCTION

Our goal for this project was to build a prosthetic hand controlled by the pe-
ripheral nervous system by using an AI model to predict specific hand gestures.
The human hand is responsible for a wide range of movements that are required
for the daily life of a human being. The loss of the human hand can highly im-
pact one’s degree of autonomy and capacity to perform daily tasks. Amputation
due to traumatic injuries is considered as one of the main causes of upper limb
amputation .

The first step of this project was to conduct researches and construct a liter-
ature review. The research conducted helped us understand and gather the in-
formation related to the goal of this project as well as highlight all the different
steps required to complete the project, these include; Materials, Methodology,
Deliverables and even funds.

In this report the Realistic constraints that will be discussed are; Design
constraints, Engineering Standards and lifelong learning, Economical Analysis,
Sustainability, Ethical Issues, Social and Political issues, Manufacturability and
Risk management and change management. These are discussed in detail below

The methodology of this project is divided into four parts, which include the
design and implementation of the acquisition system which was used to acquire
data sets, followed by the actual acquisition of EMG (electromyography) signals
from different people and different gestures (data acquisition), the design and
functionality of the prosthetic hand and the AI model which will be the interface
between the signals from the EMG sensors and the output gestures.

7

CHAPTER TWO
LITERATURE REVIEW

The human hand is capable of a wide range of intricate movements that let
us engage with our surroundings and speak with one another. The opposable
thumb, a rarity in nature, has helped us achieve high levels of dexterity allowing
our evolution to proceed rapidly over other creatures. We must synthesize a vast
amount of somaesthetic information about our surroundings, such as tempera-
ture, proprioception, vibration, pain, and fine touch, in order to perform complex
hand movements. The loss of upper limbs may have a major impact on one’s
degree of autonomy and capacity to perform daily tasks like working and vol-
unteering. Prosthetic devices only partially address the issues that restrict hand
grip, such as force or tactile feedback deficiencies and limitations in the inter-
faces used to control the prosthesis. There are three main types of prosthetic
arms

• Cosmetic Prosthetic arms

• Active Prosthetic arms (Cables)

• Myoelectric Prosthetic arms

Despite significant advancements in innovation over the past half-century,
upper appendage prostheses of today are still subject to relevant confinements.
Implanting actuators, sensors, and electronic components into a prosthesis that is
the same size and weight as the replaced hand or appendage is one of the largest
engineering challenges in the development of prosthetic devices. Another is ad-
vancing prosthesis control, which has a significant impact on the restoration of

8

someone’s daily abilities (Lee et al., 2022) To create intuitive control, the user’s
intention can be extracted from signals recorded through methods such as sur-
face EMG electrodes, ultrasound imaging, or other methods such as implantable
EMG sensors or neural interfaces from the peripheral or central nervous system.
We need a well-developed AI model in order to improve the prosthetic hand’s
behaviour and abilities. . (Reaz et al., 2006) There are many obstacles and
problems in the way of developing and using functional prosthetic hands. The
following are a few concerns regarding prosthetic hands: First: People who
could benefit from Advanced AI prosthetic hands that can recognize different
gestures and individual finger control, may not be able to access them due to
the high costs associated with the increase of EMG sensors required to provide
this high functionality. Second: The workings of the prosthetic hand using con-
ventional and theoretical methods may not suit all patients which indicates that
configuration of prosthetic hand is required for each patient

Third: Although progress has been made, it is still difficult to replicate natu-
ral sensory feedback in prosthetic hands. Research is still being done to achieve
a realistic sense of touch, temperature, and proprioception.

Fourth: Careful engineering and design are needed for the seamless inte-
gration of AI technologies with prosthetic devices. It is a constant challenge
to make sure the AI system enhances the prosthetic hand’s performance in real
time Lastly, prosthetic hands must be able to tolerate normal wear and tear. It
is essential to guarantee the robustness of the embedded AI technology as well
as the physical components. Furthermore, for long-term usability, accessible
maintenance and repair services are necessary. To guarantee safety, effective-
ness, and moral application, regulatory standards must be met during the devel-
opment and implementation of AI prosthetic hands. Complying with intricate
regulatory frameworks can be difficult for manufacturers and researchers. (Para-
juli et al., 2019) In this project we’re going to record signals relating different
gestures and individual finger control using an EMG machine, these signal data

9

sets are acquired by the Microcomputer (Raspberry Pi) by utilizing an ADC.
The AI model is then trained by using these signal data sets so the model will
distinguish the different gestures and individual finger control. After training
the AI model using the EMG Machine, we will need to also train it for our EMG
sensors on different datasets so that we can relate it to the data from the EMG
machine. Upon the completion of the AI model training, We are able to test our
device. With the inputs from the EMG sensors, we will be able to control our
servo motors for fine control of the prosthetic arm by the patient’s command.
Utilizing an I2C Communication board the communication between the servo
and the Microcomputer will allow us to produce fine control for the Prosthetic
arm.

2.1 EMG SIGNALS

When muscles contract and relax, they generate electrical signals due to
the neuromuscular activities involved. These electrical signals are called elec-
tromyographic (EMG) signals. Electromyography is the technique used to mea-
sure and record these electrical activities in muscles. According to Reaz et al.
(2006), the generation of EMG signals is closely tied to voluntary muscle move-
ments. Bionic arms, which serve as prosthetic devices for individuals who have
lost limbs or were born without them, utilize EMG signals for control. Even
in the absence of a complete limb, residual muscles in the remaining part of
the limb can produce EMG signals when they contract. These signals can be
detected and interpreted to control the movements of a bionic arm. By har-
nessing the EMG signals from these residual muscles, the bionic arm can be
maneuvered to perform various tasks, providing users with functional capabili-
ties similar to those of a natural arm. Muscle Contraction: Residual muscles in
the limb contract and produce EMG signals. EMG Signal Detection: Sensors
detect the EMG signals generated by the residual muscles. Signal Processing:
The detected EMG signals are processed and analysed by the prosthetic device’s

10

control system. Prosthesis Movement: The processed signals are used to control
the movements of the bionic arm, enabling the user to perform desired actions.
EMG signals play a crucial role in enabling the control of bionic arms, thereby
significantly improving the quality of life for users by providing them with the
ability to perform everyday tasks with their prosthetic devices.

2.2 EMG SIGNAL ACQUISITION:

To acquire EMG signals from muscles, electrodes are placed on the skin
overlying the muscles. These envelope signals must be amplified before they can
be sampled using an built in analog-to-digital converter (ADC) on the Arduino.
The MyoWare 2.0 sensor is a particularly effective tool for this purpose due to
its user-friendly design, compact size, and integrated functionalities. This sensor
is tailored for measuring muscle activity and is ideal for wearable applications.
The MyoWare 2.0 sensor simplifies the process by incorporating the necessary
amplification circuitry directly within the sensor unit. This integration ensures
that the EMG signals are amplified and outputted as clean, analog signals that
can be easily read by a microcontroller or development board. EMG data collec-
tion can be done using multiple channels, but too many channels can complicate
the system and introduce additional points of failure. For practical applications,
acquiring EMG signals from two channels strikes a good balance between data
quality and system simplicity. This approach improves classification accuracy
while minimizing complexity, making the system more user-friendly. Having
the three channels complicates the system but adds more information and differ-
entiation that is needed for the AI model. Due to solving the shipment issues of
the reference cables, three channels were decided to be used like in the original
plan. To sample and process the EMG data, a microcontroller or development
board equipped with an ADC (Various options are available, such as Arduino
board and ESP32.) is required. EMG Signal Generation: Muscles produce
electrical signals during contraction and relaxation. Electrode Use: Electrodes

11

detect these signals, which require amplification. Amplification and Processing:
The MyoWare 2.0 sensor amplifies EMG signals and provides a clean output for
microcontrollers. Prosthetic Control: Processed EMG signals enable the control
of bionic arms, restoring functionality.

12

CHAPTER THREE
REALISTIC CONSTRAINTS

During the undertaking of this project we were faced with several limita-
tions. These limitations can be described as the realistic constraints that we
faced. They were crucial and had to be effectively managed in order to ensure
the completion of our project.

3.1 DESIGN CONSTRAINTS

During the undertaking of this project several limitations may be faced.
These will be crucial and will have to be effectively managed in order to ensure
the completion of our project. One of the first limitations we can be faced with
is the unavailability of materials within Northern Cyprus. Due to this factor we
had to order our EMG sensors from Germany with the risk of long delivery time
and not receiving the complete order. In order to avoid further associated risks
mentioned above we made sure to place our order during the semester break so
that we could get the sensors right at the beginning of the semester which we
did. However, the reference cables that were supposed to come with the sensors
were missing, hence we had to order reference cables separately from England
and get them delivered to us, for efficiency we used DHL to get the cables to
Northern Cyprus. This last bit had a great impact on the lifecycle of our project
as it delayed our data acquisition process.

13

3.2 ENGINEERING STANDARDS AND LIFELONG LEARNING

Despite the challenges 5 of us managed to overcome and organize the task
list with simultaneous work, support and communication. Throughout the run-
time of this project, we learnt how to effectively communicate with each other,
allowing us to learn concepts beyond our individual field of study from each
other.

3.3 ECONOMICAL ANALYSIS

Problem: prosthetic hands are expensive and inaccessible to many Objec-
tives: -Selecting a design for 3-D printing of the hand and putting it together
-Selecting the components that will be used for the hand -Research and acquir-
ing model for the datasets from the patients -Creating an AI model to predict the
gesture from the sensors and gives a good accuracy while doing it. Cost and ben-
efits: A functional prosthetic hand could cost from $20,000 to $100,000. This
hand design costs less than $2,000. By scanning the residual limb the 3-D print
of the design and the socket can be customised for each patient. The residual
limb can be even 3-D scanned and sent to the station to be printed and shipped,
this way the access to remote areas and transportation cost and time can be re-
duced by both parties.

3.4 SUSTAINABILITY

The sustainability of this project relies on a thorough analysis of social, eco-
nomic, legal, cultural, educational, and political factors. Socially, the project
aims to enhance users’ quality of life by providing affordable and accessible
prosthetic options that improve mobility and independence. Community en-
gagement through awareness programs fosters acceptance and support, while
ongoing feedback helps refine the product. It is evident that the structure of the

14

project is still modular through design, which means that to increase the sus-
tainability of manufacturing this project improvements should be done. These
include but are not limited to; using better sensors such as intramuscular sen-
sors instead of surface EMG sensors, further training the AI with more data
sets for better predictions subsequently followed by overall software updates,
usage of more durable and sustainable materials for the prosthetic hand itself.
Economically, the focus is on affordability, with cost-effective production and
distribution to ensure access for low-income populations. Collaborations with
healthcare providers and insurance companies will help with financial support,
making the prosthetics more accessible. Exploring various funding sources,
such as grants and partnerships, further ensures financial sustainability. Legally,
the project will comply with medical device regulations to ensure safety, Strong
data privacy measures will protect user information, building trust with users
and stakeholders. By addressing these sustainability aspects, the AI prosthetic
hand project aims to make a lasting positive impact on users and communities,
fulfilling its mission to empower individuals with innovative, AI-driven solu-
tions.

3.5 ETHICAL ISSUES

In overseeing the development of an AI-driven prosthetic hand, ethical con-
siderations take precedence to guarantee user safety, privacy protection, and in-
clusivity. It’s crucial to implement stringent safety measures to thoroughly test
the prosthetic. Privacy concerns necessitate secure management of sensitive user
data, accompanied by transparent consent processes. Achieving equity involves
ensuring that the technology is accessible and affordable for everyone, irrespec-
tive of their background.

15

3.6 SOCIAL AND POLITICAL ISSUES

In the realm of AI prosthetic hand projects, navigating social and political is-
sues is crucial for success. Project managers must address ethical concerns such
as user consent and privacy while ensuring compliance with regulatory require-
ments. They can effectively use positive political tactics by building alliances,
communicating benefits clearly, and aligning project goals with organizational
objectives. This approach ensures smoother implementation, fosters innovation
in healthcare technology, and maintains stakeholder support and regulatory ad-
herence throughout the project lifecycle.

3.7 MANUFACTURABILITY

The constraints related to manufacturability that we faced was that the mar-
ket does not provide a lot of options when it comes to different portable EMG
sensors as we have struggled to find a suitable one for our project. Furthermore,
we didn’t have an appropriate acquisition system that worked with our sensors
available in the CIU labs. This also caused immense delays in our data acqui-
sition process, as we had to design and implement our own acquisition system
to our methodology. Due to this we had some irregularities within our data sets,
such as absurdly high values and inconsistent sampling frequencies. Further de-
tails regarding the specific challenges encountered within the acquisition system
are elaborated in the methodology part. Some constraints regarding the design
and 3D printing of the hand were also present. We planned to print the hand us-
ing the 3D printer of the electronics lab, but the printer was broken so we had to
request access and use the one on the mechanical lab and due to time constraints
as well as availability of the 3D printer in the mechanical lab, it was apparent
that a complex 3D design was not feasible for us to print and implement into the
project

16

3.8 RISK MANAGEMENT AND CHANGE MANAGEMENT

During the course of this project we were faced with a lot of changes. Start-
ing from the issue that only two reference cables got delivered so we had to take
the initial datasets with only 2 channels and not 3 as planned. However after a
while we got the 3rd cable and started taking data sets with 3 channels but over-
all the process of taking data sets was delayed. Furthermore, we planned to use
the Biopac to acquire data sets but after testing we saw that it was impossible to
use data acquired with Biopac to train the AI model, therefore, we had to design
our own acquisition system to acquire datasets. We also planned on having at
least 9 gestures but after repetitive data acquisitions and testing with the data
only 3 gestures where recognizable and the AI model was trained using 3 non
rest gestures and 1 rest gesture.

3.9 USAGE CONSTRAINTS

The Myoware 2.0 sensors we used to acquire the signals from are surface
EMG sensors and the sensors are quite susceptible to noise which does not make
them reliable for 24 hours use. The electrodes which are used are also surface
electrodes, which are not reusable and are easily susceptible to sweat, tear, hence
their adhesion to the skin are easily compromised throughout daily usage. The
complexity of the electronics and how it is not fully integrated into the hand
itself or into one system is also a main factor for the usage constraint of the
prosthetic hand. Furthermore, the material used for the actual Prosthetic hand
such as the ABS was used for 3D printing, the paracord and the fishing line and
their durability are also a huge factor, these materials can easily be worn and
torn, which makes it hard to sustain long periods of usage. Furthermore, the
ABS used to print the hand is slippery which reduces the functionality of the
hand while grabbing objects.

17

3.10 COST ANALYSIS

Component Quantity Turkish Lira Euro
Arduino 1 662.11TL 18.53 EUR

Raspberry Pi 1 3114.15TL 88.03 EUR
Myoware EMG Sensor 3 4344.94TL 120 EUR

Myoware Reference Electrodes 1 10 3 EUR
USB Isolator 1 1151.11TL 32.22 EUR

MG995 Servo Motor 5 48TL 20.66 EUR
SG90 Servo Motor 1 220 TL Data 45

Fishing line 5 meters 400 TL 11 EUR
DC-DC Step Down Converter 1 555.79TL 15.35 EUR

12V Power Adapter 1 750TL 20.73 EUR
16-Channel 12-bit PWM/Servo Driver 1 397.28 TL 11.12 EUR

Combined Shipping Fees - 6517.06 TL 180 EUR
Total Data 79 Data 80 510 EUR

Table 3.1: Cost Analysis Table

18

CHAPTER FOUR
METHODOLOGY

4.1 ACQUISITION SYSTEM

4.1.1 Design

The Biopac acquisition system was initially going to be used to acquire data
sets for training the AI system, however, due to the difference between the sens-
ing capabilities of the sensors used, a system was designed and implemented
to acquire physiological muscle signals using the Myoware muscle sensors and
Arduino microcontroller to acquire data sets.

Figure 4.1: Acquisition System Design

19

The Arduino is configured as an ADC that is used to get the analog values
from the Myoware sensor readings and send the data via the serial port that’s
connected to the computer. In the computer a code was developed using Python
which used the PySerial library to capture the values from the Arduino Serial
Port. A special way to print the values serially was needed since printing the
values one by one in a comma separated manner would affect the loop time
drastically and therefore the sampling rate therefore sprintf function was used
to efficiently send the values through Serial. Ample time was also given so the
Arduino ADC could settle to produce accurate readings.

4.1.2 Output validation

EMG Signals have a frequency range of 20-500Hz and according to the
Nyquist Theorem for the minimum sampling rate required to recreate the signal
is 2*B where B is the bandwidth of the signal. This results in a sampling rate
of 1000Hz. The way to control the sampling rate in the Arduino is by adjusting
the loop runtime so in order to control the sampling rate the delay function was
used to control the loop runtime. In this system the Myoware library gracefully
provides a way to test the sampling rate of your system using the code In Ap-
pendix 1. The sampling rate of the system is 1100+/-100Hz this was validated
by checking the output which was the csv file. The csv file generation is illus-
trated in the flow chart below. The Python code can be found in Appendix 2

Figure 4.2: CSV file generation flowchart

20

4.2 DATA ACQUISITION

4.2.1 Anatomical background

In order to detect electromyography signals EMG sensors would have to
be placed on the forearm. These locations were carefully selected based on the
muscles of the forearm and the hand. For this project the Brachioradialis, Flexor
carpi radialis and Flexor carpi ulnaris muscles were used to acquire signals.

Figure 4.3: Muscles used for signal acquisition

The Brachioradialis muscle is responsible for precise finger movements by
maintaining elbow stability and positioning the forearm [2]. Flexor carpi radialis
and Flexor carpi ulnaris provide wrist stability and movement which is essential
for proper hand positioning and effective grip [2]. Therefore, these muscles
contribute collectively to the coordination and control needed for complex hand
and finger movements [3].

21

4.2.2 Gesture selection

For gesture selection we referred to one of the reviewed research papers and
recorded the gestures they used, plus some of the gestured we wanted to include.
The gestures were recorded using Biopac Student Lab acquisition system. The
Biopac allowed us to visualize which gestures had stronger signals. Based on
this information we were able to eliminate and select the gestures we would
record. At that time because of our delivery setbacks there were only two sensors
available so, we recorded the gestures with Biopac to later eliminate and select
the appropriate gestures. The muscles we used for this were the Brachioradialis
(sensor 2) and the Flexor carpi radialis (sensor 1). Here are our results and please
note that the red represents sensor 1, flexor carpi ulnaris and blue represents
sensor 2, brachioradialis.

Figure 4.4: Rest to fist Figure 4.5: Rest to thumb

22

Figure 4.6: Rest to index Figure 4.7: Rest to pinky

Figure 4.8: Rest to ring Figure 4.9: Rest to middle

23

Based on the acquisitions made with Biopac the gestures we selected for our
prosthetic hand are; Fist, Thumb Finger, Index Finger, Scissors, Three, Four,
Paper, Okay and Finger Gun. Therefore, we have 9 non-rest gestures and 1 rest
gesture. The data set used to train the AI model was composed of 8 individual
datasets, 4 females and 4 males. The sampling frequency was 1070Hz which
gave us a sampling raze of 1100/1300 samples per second. Hence for every
0.03seconds 3 different samples from the 3 different channels was recorded.
The structure we chose for the acquisition of the gestures mentioned above was
as follows:

• 5s rest followed by 5s non rest. This forms a set.

• 5 repeated sets form 1 round

• 4 rounds will be conducted for each gesture by each subject.

• 10 s interval between rounds

• 3 min rest after 4 rounds

Figure 4.10: Electrode Placements

24

4.3 AI MODEL

4.3.1 Control configurations

When it comes to controlling prosthetic devices using electromyography
(EMG) signals, there are two primary configurations: Direct Control and Pattern
Recognition. Each method has its own advantages and limitations, making them
suitable for different applications.

4.3.2 Direct control

Direct control uses the magnitude of the EMG signal to execute specific
movements in the prosthetic device. EMG signals are inherently random and
variable, making it difficult to use raw EMG signals effectively. To overcome
this, the Mean Absolute Value (MAV) of the EMG signal is calculated over a
set period . If the MAV exceeds a certain threshold, it triggers the prosthetic
device to perform a movement. This approach can also incorporate multiple
EMG channels from different muscles, allowing for multi-gesture control. The
movement’s speed can be proportionally controlled by the MAV value, known
as proportional control. The simplicity of direct control makes it an attractive
option for many commercial prosthetics, as it is relatively straightforward to
implement. However, direct control is not without its challenges. It is effective
for simple actions like opening and closing a hand, but as more gestures are
required, the need for additional EMG channels increases. This adds to the
system’s complexity, increases the likelihood of hardware failures, and reduces
accuracy due to muscle crosstalk, where signals from adjacent muscles interfere
with each other. These factors can make the system less reliable overall. Despite
these challenges, direct control remains a popular method due to its simplicity
and ease of implementation. It is particularly well-suited for prosthetic devices
that perform basic, repetitive movements.

25

4.3.3 Pattern recognition

Pattern recognition offers a more advanced and versatile approach to con-
trolling prosthetics. Instead of relying on the magnitude of the EMG signal,
pattern recognition techniques analyze the patterns within the signal to identify
specific gestures. This method uses both handcrafted and computer-generated
features of the EMG signals, including envelope EMG signals, to control the
prosthetic device. Given the complex, time-series nature of EMG signals, rec-
ognizing patterns by human observation is impractical. Therefore, feature ex-
traction techniques are used to process the signals. These techniques can be tra-
ditional methods or more advanced approaches using artificial neural networks.
Once the features are extracted, machine learning algorithms classify the sig-
nals into different gesture categories. While pattern recognition is more compu-
tationally demanding and algorithmically complex than direct control, it offers
several significant advantages. It tends to be more robust, with fewer points of
failure and greater resistance to muscle crosstalk. This makes it better suited
for handling multiple gestures and providing a more reliable control mechanism
for prosthetics. In this project, we will use pattern recognition techniques rather
than direct control. This decision is based on the robustness and versatility of
pattern recognition, which can handle a broader range of gestures with higher
accuracy and reliability. By leveraging these advanced techniques, we aim to
develop a more effective and dependable control system for prosthetic devices.

4.4 DATA PREPROCESSING

When working with EMG signals for controlling prosthetic devices, it is
essential to preprocess the signals effectively to ensure accurate real-time pattern
recognition. This involves several steps, including pre-recording and labeling
the signals, windowing the data, and choosing the appropriate feature extraction
methods.

26

4.4.1 Windowing

For real-time pattern recognition, it is impractical to use the entire signal
for feature extraction, as this would cause significant delays between the actual
movement and the prosthetic device’s response. Instead, the signal is divided
into smaller segments or windows. This approach reduces the delay and allows
for more responsive control of the prosthetic device. Windowing can be done
using either an overlapping or non-overlapping (disjoint) windowing scheme.
In overlapping windowing, each window overlaps with the previous one by a
certain amount, providing a more continuous and detailed analysis of the signal.
On the other hand, disjoint windowing uses non-overlapping segments, which is
simpler but may miss some details. The choice of windowing scheme depends
on the specific requirements of the prosthetic device and the desired trade-off
between responsiveness and accuracy. In this project, we will use overlapping
windowing to ensure a more detailed analysis of the EMG signals and improve
the accuracy of the pattern recognition system.

Figure 4.11: Overlapping and non-overlapping windows

Research has shown that overlapping windowing schemes generally produce
better classification accuracy than disjoint windowing schemes, although they
are more computationally intensive and can introduce delays in the process (En-
glehart & Hudgins, 2003). However, the classification accuracy also depends

27

on other factors, such as window size, the number of training samples, and the
parameters of the classifier used (Khushaba, 2012). Given these considerations,
this project uses an overlapping windowing scheme to balance accuracy and
computational efficiency.

4.4.2 Threshold function

To differentiate between rest and non-rest states in EMG signals, we em-
ployed the Mean Absolute Value (MAV) of each windowed segment as a key
feature. The MAV is a widely used metric in EMG signal processing due to its
simplicity and effectiveness in representing the signal’s overall activity level. It
is calculated by taking the average of the absolute values of the signal’s ampli-
tudes within a given window. This method effectively captures the intensity of
muscle activity, making it a reliable indicator of whether a muscle is at rest or
active.

• Youden’s J Statistic:

Youden’s J Statistic is a straightforward method to determine the optimal thresh-
old for distinguishing between two classes, such as rest and non-rest gestures.
It is calculated by adding the sensitivity (true positive rate) and specificity (true
negative rate) and then subtracting 1: Youden’s J=Sensitivity+Specificity-1

• Receiver Operating Characteristic (ROC) Curve Analysis

To establish a threshold for MAV that accurately distinguishes between rest and
non-rest states, we utilized the Receiver Operating Characteristic (ROC) curve.
The ROC curve is a graphical representation that illustrates the diagnostic ability
of a binary classifier system as its discrimination threshold is varied. It plots the
True Positive Rate (sensitivity) against the False Positive Rate (1-specificity)
for different threshold values. By analyzing the ROC curve, we can identify

28

the optimal threshold that balances sensitivity and specificity, maximizing the
classifier’s accuracy.

In this context, the ROC curve complements Youden’s J Statistic by pro-
viding a visual method to evaluate the classifier’s performance across various
thresholds. The decision to use the ROC curve and Youden’s J Statistic was
driven by their ability to provide a comprehensive evaluation of the classifier’s
performance across various thresholds. This approach allowed us to select a
threshold that minimizes the rate of false positives (incorrectly classifying rest
as non-rest) and false negatives (incorrectly classifying non-rest as rest). As a
result, the chosen MAV threshold ensures a robust and reliable differentiation
between rest and non-rest states, enhancing the overall accuracy and reliability
of our EMG signal classification system.

Figure 4.12: Overlapping and non-overlapping windows

29

4.4.3 Feature extraction

Extracting features from envelope EMG signals is a crucial step in inter-
preting and classifying the gestures effectively. We utilized several features to
effectively capture the characteristics of EMG signals. These features include
time-domain features such as Slope Sign Changes (SSC), Skewness, Log Detec-
tor, Temporal Moment, Hjorth Mobility and Complexity, and Waveform Length
(WL). Additionally, we used Mean Frequency (MNF), a frequency-domain fea-
ture. Together, these features provide a comprehensive representation of the
signal’s statistical and temporal properties, which are essential for accurate ges-
ture recognition. Below is a detailed explanation of these features: 1. Slope Sign
Changes (SSC): The number of times the samples of EMG segment changes sign
the slope (derivative) is calculated. A threshold value for a minimum amount of
change is required to minimize noise-induced errors (Hudgins, et al., 1993).
Where xk is the current sample value in the EMG signal at index k, xk−1 is the

Figure 4.13: Slope Sign Changes (SSC) Formula

previous sample value in the EMG signal at index k−1, xk+1 is the next sample
value in the EMG signal at index k+1, and ε is the threshold value to determine
significant slope changes, used to filter out noise.

30

2. Skewness: Skewness measures asymmetry/distortion of a distribution.
When amplitudes of samples of EMG segment are represented as a distribution,
skewness can be measured.

Skewness =

1
N

N
∑

i=1
(Xi −µ)2

(
1
N

N
∑

i=1
(Xi −µ)2

)3
2

(4.1)

Where µ is the standard deviation and N is the number of variables, and X’ is
the mean of the distribution.

3. Log Detector: Provides an estimate of the exerted muscle force. This is a
non-linear feature (Tkach & Huang, 2010).

logDetector = e
1
N

N
∑

i=1
log(|Xi|)

(4.2)

4. Temporal Moment (TM): The temporal moment is a statistical analysis
technique that can be used as a feature. Since the first and second order of TM
is MAV and Variance, 3rd order and above is taken (Phinyomark, et al., 2012).

T M =

∣∣∣∣∣ 1
N

N

∑
i=1

Xorder
i

∣∣∣∣∣ (4.3)

31

5. Hjorth Mobility and Complexity: Hjorth parameters are statistical indi-
cators used in time domain signal properties, it was introduced by Bo Hjorth
(1970). Hjorth Mobility represents the mean frequency of the frequency spec-
trum of the EMG segment. It is defined as the square root of the variance of the
first derivative divided by the variance of the signal.

Mobility =

√√√√var
(

∂y(t)
∂ t

)
var(y(t))

(4.4)

Hjorth complexity represents the change in frequency

Complexity =
Mobility

(
∂y(t)

∂ t

)
Mobility(y(t))

(4.5)

6. Waveform Length (WL): Waveform Length (WL) measures the total
length of the waveform over time, providing an indication of the waveform’s
complexity.

WL = ∑ |diff(x)| (4.6)

7. Mean Frequency (MNF): Mean Frequency (MNF) is the average frequency
of the signal’s power spectrum, indicating the dominant frequency component
in the signal.

fmean =

n
∑

i=0
Ii · fi

n
∑

i=0
Ii

(4.7)

Where Ii represents the power spectrum’s amplitude at a specific frequency com-
ponent, fi is the frequency value of the i-th component in the power spectrum,
and n The total number of frequency components in the signal’s power spec-
trum.

32

4.4.4 feature normalization

Feature normalization is a crucial step in preprocessing data, especially for
machine learning models. It ensures that all features contribute equally to the
model’s performance. In this section, we discuss three common normalization
techniques: Min-Max Scaler and StandardScaler.

1. Min-Max Scaler : Min-Max Scaler transforms features by scaling each
feature to a given range, usually between 0 and 1. This is achieved by subtracting
the minimum value of each feature and then dividing by the range (maximum
value minus minimum value). The formula for Min-Max Scaling is:

xscaled =
x− xmin

xmax − xmin
(4.8)

The primary advantage of Min-Max Scaler is that it preserves the relation-
ships between data points, making it useful when features have different units
and ranges. However, one of its disadvantages is its sensitivity to outliers be-
cause it uses the minimum and maximum values of the feature set. In this
project, we used Min-Max Scaler for the K-Nearest Neighbors (KNN) algo-
rithm to ensure all features contributed equally to the distance calculations used
by KNN.

2. StandardScaler : StandardScaler standardizes features by removing the
mean and scaling to unit variance, meaning each feature will have a mean of 0
and a standard deviation of 1. The formula is:

z =
xi −µ

σ
(4.9)

where µ is the mean and σ is the standard deviation of the feature. The ad-
vantages of StandardScaler include standardizing the data, which is essential for
algorithms that assume normally distributed input data, and being useful when
the features have different units or scales. However, it can still be affected by

33

outliers, although not as much as Min-Max Scaler. In this project, we used
StandardScaler for the Artificial Neural Network (ANN) model. This approach
ensured that each feature had equal importance and contributed equally to the
performance of our classification model. Proper normalization helped improve
the convergence and accuracy of our ANN model, ultimately leading to better
gesture recognition accuracy.

4.5 MODELS

4.5.1 K-nearest neighbors (knn)

K-Nearest Neighbors (kNN) is a straightforward and intuitive algorithm used
for classification tasks. It operates on the principle of proximity, assuming that
similar data points exist close to each other. The core idea of kNN is to classify
a new data point based on the ’k’ closest data points from the training set. Here’s
how it works: 1. Neighbors (k): The parameter ’k’ refers to the number of near-
est neighbors to consider when making a classification decision. For instance, if
k=3, the algorithm looks at the three closest data points. If two of these points
belong to class A and one belongs to class B, the new data point is classified as
class A through a majority vote mechanism. 2. Distance Metric: The Euclidean
distance is typically used to measure the distance between data points. It calcu-
lates the straight-line distance between two points in Euclidean space, which is
given by:

|X −Y |=

√
n

∑
i=1

(xi − yi)2 (4.10)

where X and Y are two points in n-dimensional space.

34

3. Weights:

• Uniform: Each of the k neighbors is given equal weight in the voting
process.

• Distance: Neighbors closer to the new data point are given more weight,
making their votes

In this project, we utilized the Min-Max Scaler to normalize the data be-
fore applying kNN. Normalization ensures that all features contribute equally to
the distance calculations, preventing features with larger ranges from dominat-
ing the distance metric and thereby improving classification accuracy. kNN was
chosen for its simplicity and effectiveness in capturing proximity-based relation-
ships between different gestures in the EMG signal data. Despite its computa-
tional intensity, which requires storing all training data and calculating distances
during classification, kNN’s non-parametric nature makes no assumptions about
data distribution, making it versatile for various tasks.

Figure 4.14: Visual Representation of K-Nearest Neighbors (kNN) Classifica-
tion

35

4.5.2 artificial neural network (ann):

Artificial Neural Networks (ANNs) are inspired by the biological neural net-
works found in human brains. They consist of layers of interconnected nodes
(neurons), where each connection has an associated weight. In our project, we
designed the ANN with specific architectural choices to achieve optimal perfor-
mance. 1. Hidden Layers and Neurons:

Hidden Layers: These are intermediate layers between the input and output
layers. They perform computations to extract features from the input data. The
number of hidden layers and the number of neurons in each layer can be adjusted
to control the model’s capacity to learn complex patterns. Neurons: Each hidden
layer consists of neurons, where the number of neurons can affect the model’s
ability to capture different levels of abstraction.

ReLU (Rectified Linear Unit): This activation function is used in the hidden
layers. It introduces non-linearity to the model, enabling it to learn complex
patterns. The ReLU function is defined as:

ReLU(x) = max(0,x) (4.11)

Softmax: Used in the output layer for classification tasks. It converts the
raw output scores into probabilities, making it easier to interpret the model’s
predictions. The Softmax function is defined as:

softmax(z j) =
ez j

K
∑

k=1
ezk

(4.12)

where z j is the input to the i-th neuron, and K is the number of classes

36

3. Dropout: Dropout is a regularization technique used to prevent overfit-
ting. During training, a fraction of the neurons is randomly set to zero at each
iteration, which helps the model to generalize better to new data. This is con-
trolled by a parameter called dropout rate.

4. Batch Normalization: This technique normalizes the inputs of each layer
to have a mean of 0 and a standard deviation of 1. It stabilizes the learning
process and allows for higher learning rates, leading to faster convergence.

5. Epochs and Batch Size: The number of times the entire training dataset
is passed through the network. More epochs can improve the model’s accuracy
but may also lead to overfitting if not controlled.

6. Optimizer and Learning Rate: We used optimizers like Adam or Stochas-
tic Gradient Descent (SGD) to update the model weights. Adam is popular due
to its adaptive learning rate, which adjusts the learning rate during training for
faster convergence.

7. Loss Function: The loss function measures the difference between the
predicted output and the actual target. For classification tasks, we commonly
use categorical cross-entropy as the loss function.

Figure 4.15: Architecture of an Artificial Neural Network (ANN)

37

In this project StandardScaler is used to normalize the input features be-
fore feeding them into the ANN. Standardization ensures that each feature has
a mean of 0 and a standard deviation of 1, which helps in training efficiency
and model performance. The ANN’s architecture was designed to capture the
complex patterns in the EMG signal data, leading to high classification accuracy
for gesture recognition. The flexibility and power of ANNs made them an ideal
choice for this task, despite the computational demands. The results from the
ANN were highly promising, showing the potential of neural networks in accu-
rately classifying gestures based on EMG signals.

4.6 VOTING MECHANISM

In the final stages of our project, we implemented a technique known as Ma-
jority Voting to enhance the robustness and reliability of our gesture recognition
system. Majority voting is a method where the system considers a series of pre-
dictions over a specified number of windows or time frames and determines the
final output based on the most frequently predicted class. This approach helps
to mitigate the effects of noise and transient misclassifications, leading to more
stable and accurate gesture recognition. After training our models and evaluat-
ing their accuracy, we applied Majority Voting to the sequence of predictions.
Instead of relying on a single prediction for each window of data, we maintained
a queue of recent predictions. As new data windows were processed, their pre-
dicted gestures were added to the queue. Once the queue reached a predefined
size, we identified the most common gesture within the queue and used this as
the final output. This Majority Voting mechanism proved to be particularly ef-
fective in our real-time application. By aggregating multiple predictions, the
system could smooth out any short-term inaccuracies and provide a more con-
sistent and reliable output. This approach is crucial in practical applications
where noise and variability in the input signals can lead to occasional misclas-
sifications. The Majority Voting strategy ensured that the overall system perfor-

38

mance remained robust, even in the presence of such challenges. However, this
increased robustness comes with the penalty of extended delay in the decision
process, as more predictions are required before making a final decision.

Figure 4.16: Majority Voting Mechanism for Model Aggregation

4.7 EVALUATION METRICS

Evaluating the performance of our gesture recognition system is crucial to
understand its effectiveness and reliability. Several metrics were employed to
assess the models, providing a comprehensive view of their performance. 1.
Accuracy: Accuracy is one of the most straightforward evaluation metrics and
represents the proportion of correctly classified instances among the total in-
stances. It is calculated as:

Accuracy =
Number of correct Predictions

Total number of predictions
(4.13)

Accuracy provides a general sense of how well the model is performing, but
it can be misleading in cases where class imbalance exists. Therefore, while
accuracy is useful, it should be considered alongside other metrics. Precision,

39

Recall, and F1-Score Precision, recall, and F1-score are more nuanced metrics
that provide deeper insights into the model’s performance:

• Precision

measures the proportion of true positive predictions among all positive pre-
dictions. It indicates how many of the predicted gestures were correctly classi-
fied. Precision is calculated as:

Precision =
True Positive (TP)

True Positive (TP)+False Positive (FP)
(4.14)

• Recall (Sensitivity or True Positive Rate)

measures the proportion of true positive predictions among all actual positives.
It shows how many of the actual gestures were correctly identified. Recall is
calculated as:

Recall =
True Positive (TP)

True Positive (TP)+False Negative (FN)
(4.15)

• F1-Score

is the harmonic mean of precision and recall, providing a single metric that
balances both. It is particularly useful when the class distribution is uneven. F1-
score is calculated as:

F1 score = 2× Precision×Recall
Precision+Recall

(4.16)

These metrics are critical in understanding how well the model handles each
class, especially in identifying which gestures it predicts accurately and where
it struggles. Confusion Matrix

The confusion matrix offers a detailed breakdown of the model’s predictions.
It is a table that shows the true positive, false positive, true negative, and false

40

negative counts for each class. This matrix helps in understanding the types of
errors the model is making and which classes are being misclassified. The con-
fusion matrix is particularly valuable in multi-class classification problems, such
as ours, where understanding the performance across all gestures is essential.

Figure 4.17: Structure of a Confusion Matrix and Associated Metrics

By employing these evaluation metrics, we were able to thoroughly as-
sess the performance of our gesture recognition models. Each metric provided
unique insights into different aspects of the model’s behavior, allowing us to
fine-tune and optimize our system for the best possible performance. The com-
bination of these metrics ensured that our evaluation was comprehensive and
that the final model was both accurate and reliable for real-time applications.

4.8 SOFTWARE AND LIBRARIES UTILIZED

In the development and implementation of this project, a variety of software
tools and libraries were crucial. The primary programming language used was
Python, selected for its extensive support in machine learning and data analysis.

Python
served as the backbone of the project, enabling seamless integration of vari-

ous libraries and tools, providing a robust environment for coding, testing, and
deploying machine learning models. NumPy played a critical role in numerical

41

computations, offering support for large, multi-dimensional arrays and matrices,
along with a collection of mathematical functions to operate on these arrays. It
was essential for efficient handling and manipulation of numerical data.

Pandas was extensively used for data manipulation and analysis. This pow-
erful library facilitated tasks such as data cleaning, transformation, and visual-
ization, enabling efficient handling and processing of the EMG signal data.

Scikit-learn was the primary library for machine learning tasks. It pro-
vided tools for data preprocessing, model training, evaluation, and feature selec-
tion. Techniques like Recursive Feature Elimination (RFE), mutual information
for feature selection, and cross-validation were implemented using this library.
Models such as Decision Tree Classifier and K-Nearest Neighbors (kNN) were
also built and evaluated with scikit-learn.

Joblib was used for saving and loading Python objects, such as the scalers
used in preprocessing the data. This allowed for efficient persistence of models
and preprocessing steps.

TensorFlow and Keras were employed for building and training the Artificial
Neural Network (ANN) model. TensorFlow provided the backend for executing
the computations, while Keras offered a high-level interface for defining and
training the neural network. The optimizers used included Adam and Stochastic
Gradient Descent (SGD).

TensorFlow Lite was utilized to convert the trained ANN model into a for-
mat suitable for deployment on the Raspberry Pi. This lightweight version of
TensorFlow enabled efficient model inference on the resource-constrained envi-
ronment of the Raspberry Pi.

SciPy was used for scientific and technical computing. It provided functions
for signal processing, essential for tasks like filtering the EMG signals. The
library’s welch method was particularly useful for frequency analysis, and the
skew function helped in calculating the skewness of the signal data.

Matplotlib was used for creating visualizations. It helped in plotting graphs

42

and charts to analyze the data and visualize the model’s performance. These
tools and libraries collectively contributed to the project’s success, providing
the necessary functionalities to handle data, build and train models, evaluate
performance, and deploy the solution on a hardware platform. Each library
played a distinct role in different stages of the project, from data preprocessing
and feature selection to model training and deployment.

4.9 DESIGN AND IMPLEMENTATION

In this project, data collection was a critical first step. Our dataset contains
a total of 4,891,104 samples, gathered at a sampling frequency of 1070 Hz. We
gathered EMG signal data from a total of eight participants, comprising four
females and four males. The participants were asked to perform three specific
gestures:

• Fist

• Paper

• Okay

Each gesture was repeated in four rounds, with each round consisting of five
repetitions of the gesture. Each repetition lasted for five seconds, followed by
a five-second rest period. This structure ensured a consistent and ample dataset
for training and testing our machine learning models. Given the sampling fre-
quency of 1070 Hz, each five-second repetition produced 5350 samples. The
high sampling rate allowed for capturing detailed EMG signal patterns, which
are essential for accurate gesture classification.

To prepare the data for analysis, we employed a windowing technique. Win-
dowing involves segmenting the continuous EMG signal into smaller, manage-
able segments, or windows, which can be analyzed individually. We experi-
mented with various window sizes: 150 ms, 200 ms, 250 ms, and 300 ms. Ad-

43

Figure 4.18: Mean Absolute Value (MAV) for Each Window for Fist Gesture

ditionally, we used overlapping windows to ensure a smoother and more con-
tinuous analysis. The overlap for each window size was set to create a delay
of 15 ms, 20 ms, 25 ms, and 30 ms, respectively. This approach enabled us to
determine the optimal window size for our models, balancing between capturing
enough signal information and maintaining computational efficiency.

For each window created, we calculated its Mean Absolute Value (MAV).
This value was crucial in determining a threshold that could separate between
rest and non-rest states. To establish the optimal threshold, we employed Youden’s
J Statistic and Receiver Operating Characteristic (ROC) curve analysis. These
methods helped identify the threshold that maximized the classifier’s accuracy
by balancing sensitivity and specificity. The chosen threshold ensured a robust
differentiation between rest and non-rest states, enhancing the overall accuracy
and reliability of our EMG signal classification system.

The Fig.4.23 shows the Mean Absolute Value (MAV) for each window of the
”Fist” gesture and rest periods. The x-axis is the window index, and the y-axis is
the MAV. Lines represent MAV values for Sensor1, Sensor2, and Sensor3. Peaks
indicate the ”Fist” gesture, while low values show rest periods. This separation
helps determine the threshold to distinguish between gesture and rest states.

44

To identify this threshold, we employed the Receiver Operating Character-
istic (ROC) curve. The dataset was split into two parts:

• The first part was used to find the best threshold using the ROC curve.

• The second part was used to test the effectiveness of this threshold.

After determining the optimal threshold using the ROC curve analysis, the
next step involves comparing each calculated Mean Absolute Value (MAV) with
this threshold. This process helps in distinguishing between active gestures and
rest periods in real-time.

Figure 4.19: Pattern recognition pipeline

As depicted in the block diagram:

• EMG Signal Acquisition: The EMG signals are continuously acquired
from the sensors placed on the muscles.

45

• MAV Calculation: For each analysis window, the MAV is calculated to
quantify the signal’s intensity.

• Threshold Comparison: The MAV of the current window is compared
against the pre-determined threshold.

o If MAV ¿ Threshold: This indicates an active gesture. The system proceeds
with:

• Feature Extraction: Extract relevant features from the EMG signal within
the window.

• Feature Scaling: The extracted features are scaled to ensure they are on a
similar scale, which helps in improving the performance of the AI model.

• Classification: Use the trained AI model to classify the scaled features and
predict the gesture.

• Voting Queue: The predicted gesture is added to the voting queue to con-
tribute to the final decision.

• Voting Queue: The ’Rest’ label is added to the voting queue without per-
forming feature extraction and classification.

• Control Signal Generation: The voting mechanism, which employs Ma-
jority Voting, determines the most frequent label in the voting queue. This
label is then used to generate the appropriate control signal for the pros-
thetic device. The voting queue length we decided to use is 150, meaning
that after 150 predictions , we determine the final prediction based on the
most frequent label in this queue.

46

4.10 DESIGN AND CONTROL

4.10.1 Control mechanisms

Figure 4.20: Control mechanisms

The design and control mechanism of the prosthetic hand divided into two
parts:

• 3D design

• Actuators and controllers

4.10.2 3d design

The 3D design of the prosthetic hand, based on a Thing verse open-source
model, utilizes a tendon-driven mechanism to control finger movements. This
mechanism mimics the natural operation of human tendons and muscles, allow-
ing for both independent finger movement and preset gestures. Here’s a detailed
explanation of the design and its components:

47

4.10.2.1 Functionality

Tendon-Driven Mechanism: The fingers are controlled by tendons, similar
to how human fingers are moved by tendons connected to muscles. Fishing lines
are used as tendons. These lines are chosen for their ability to withstand high
tension, necessary for forceful and precise finger movements. The tendons are
connected to actuators that pull or release them, thereby moving the fingers.
This setup allows for fine control over each finger’s position.

Finger Movement: Each finger can move independently, providing a high
degree of dexterity. This feature is crucial for performing tasks that require
precision and coordination. The design includes preset gestures, enabling the
hand to perform common movements automatically, which can be particularly
useful for repetitive tasks or specific functional grips.

Structural Components: The prosthetic hand is made using ABS (Acryloni-
trile Butadiene Styrene), a plastic known for its high strength, light weight, heat
resistance, and ductility. The components are printed using a Cubicon Single
Plus 3D printer. This printer is capable of producing high-quality, durable parts
necessary for the reliable operation of the prosthetic hand. The fishing lines
used as tendons in the prosthetic hand must possess certain characteristics to
ensure optimal performance: The lines must be able to withstand significant
force without snapping. This is essential for controlling the fingers with preci-
sion and strength. The lines should have minimal stretch to ensure accurate and
consistent finger movements. Stretchy lines could lead to imprecise control and
reduced functionality. The lines must be lightweight to minimize the load on the
actuators. Lighter lines require less force to move, resulting in more efficient
finger control.

Durability: The tendons need to endure repeated use without degrading, en-
suring the longevity of the prosthetic hand. Flexibility: While strong, the lines
must also be flexible enough to move smoothly through the hand’s structure, al-
lowing for fluid finger movements.

48

4.10.2.2 Thingiverse hand design and assembly

Figure 4.21: Palm & Wrist design

Mounting the Wrist Connector: The wrist unit usually has a universal con-
nector or specific adapter that fits into the base of the palm. This can be a
threaded connector, a snap-on mechanism, or a dovetail slide. Then Ensure the
connector is aligned correctly with the palm’s base. Use screws, bolts, or a lock-
ing mechanism to secure the wrist connector to the palm. This step is crucial to
ensure that the palm does not detach during use.

49

Figure 4.22: Fingers & Thumb design

The prosthetic hand design utilizes flexible paracord to attach the fingers and
thumb to the palm, allowing for smooth bending and unbending at the joints.
The paracord provides the necessary flexibility for a full range of motion in the
fingers and thumb, while fishing lines act as tendons, connecting these digits
to the hand’s actuators. These fishing lines, capable of handling up to 5kg of
force, enable precise and independent control of each finger and the thumb. This
setup mimics natural hand movements, combining the flexibility of paracord for
joint connections with the tensile strength of fishing lines for effective actuation,
resulting in a lifelike and functional prosthetic hand that is durable and easy to
maintain.

50

Figure 4.23: Fishing Lines pulleys

Design and Structure: Circular Design: The circular design of servo horns
ensures an even distribution of force. This shape helps in minimizing stress
concentrations and wear on specific points, contributing to a smoother and more
reliable operation over time. Material: Typically made from lightweight and
durable materials such as aluminum or reinforced plastic, servo horns are de-
signed to withstand the repetitive forces exerted during the movement of the
prosthetic hand. Attachment to Servo Motor: Mounting Holes: The servo horn
is attached to the servo motor shaft using screws or a spline fitting, which en-
sures a secure connection. The mounting holes in the servo horn align with
those on the servo motor shaft. Alignment and Calibration: Precise alignment is
essential to ensure that the servo horn can transfer the motor’s rotational motion
accurately to the mechanical linkages or tendons. Calibration is performed to
synchronize the horn’s position with the intended neutral position of the hand.

51

Figure 4.24: Forearm and Servo holder design

The forearm housing is typically custom-designed to accommodate the servo
motors, servo horns, and cable channels. This ensures a compact and efficient
layout that maximizes the available space. Servo motor holders are typically
constructed from plastic materials such as ABS or PLA . These materials provide
the necessary strength to support the servo motors under load. Secure Mount-
ing: Servo motors are placed into the servo motor holder and mounted onto the
forearm using screws, providing a stable and secure attachment. The brack-
ets are designed to hold the motors firmly in place, preventing any unwanted
movement. Mounting: The servo motor holder is integrated with a base that is
designed to fit the internal structure of the forearm. This base is strategically
placed to provide maximum stability and support to the servo motors and the
overall structure of the holder.

52

Screw Attachment: Stable Connection: The servo motor holder is attached
to the forearm using screws that pass through holder base and into the forearm
structure. This creates a stable and secure connection that can withstand the
forces generated during the operation of the prosthetic hand. The precise fit of
the servo motors within the holder, combined with the secure attachment of the
holder to the forearm, ensures that the motors remain firmly in place during use.
This rigidity is essential for accurate and reliable operation.

Print settings:
Printer brand: Cubicon single
Printer: Cubicon single plus
Infill: 30

Parts to print without supporters:

• Servo horns

• Fingers

• Palm

• Servo holder

Parts to print with supporters:

• Forearm

• Wrist

• Hand thumb

Note: To ensure the prosthetic hand components print correctly and with-
out damage, supports must be added to the parts that’s need supports. These
supports are especially important for parts like forearm, wrist and thumb con-
nections.

53

4.10.3 Actuators and controllers

Raspberry Pi – Arduino was used to implement the system. This method al-
lows the combining of computing power / wireless capabilities of Raspberry Pi
with more versatile input/output capabilities of a Arduino Uno. Arduino will re-
ceive the signals and send it to the AI model in raspberry pi 4 . while raspberry pi
will receive the acquired signals form Arduino and control the servo motors ac-
cordingly. Using universal Asynchronous Reception and Transmission (UART)
serial communication protocol, Raspberry and Arduino will communicate with
each other via USB ports to send the EMG signals and control the servo motors
according to the input signal detected by the Myoware 2.0 sensor. According to
the mentioned information about the components and its specification the final
circuit diagram as follows:

Figure 4.25: Circuit diagram

54

4.10.3.1 Actuators

To control the fingers of the prosthetic hand 5-Servo motors were used. An
additional servo motor will be used to control the Metacarpal joint of the thumb
finger. The chosen model of the servo motor is Tower pro MG995 Metal gear
servo with the following specifications:

Figure 4.26: MG995 Tower pro Servo motor

Parameter Value
Operating voltage 4.8 – 6V
Weight 56 grams
Speed 0.13 seconds/60 degrees (6V)
Stall torque 11 kg/cm (6V)
Gear types Metal
Rotation 360 degrees
Stall current 2.5 A (6V)

Table 4.1: Motor Specifications

55

4.10.3.2 Controllers

he servo motor delivers adequate torque and speed while remaining compact
enough to fit on the arm base. All servos were controlled using 12-bit 16 channel
PWM/ (PCA9685) Which connects the microcontroller via I2C communication
board Interface. The PCA9685 is a 16-channel, 12-bit PWM driver that can
control up to 16 servos with a single board. It uses the I2C communication pro-
tocol to communicate with the microcontroller, allowing for precise control of
the servo motors. The PCA9685 provides a simple and efficient way to control
multiple servos simultaneously, making it ideal for applications like prosthetic
hand control.

Figure 4.27: PCA 9685 servo driver

56

4.10.3.3 EMG Sensors

For the signal acquisition, 3 Myoware 2.0 sensors with dry electrodes were
used. The Myoware 2.0 sensor is used to detect the muscle activity of the hand
then will collect the data and amplify it with the internal amplifier integrated in
the sensor. To acquire EMG signals three channels are used. Envelope output of
each sensor is going to be used to extract the signals. The outputs of the sensors

Figure 4.28: Myoware sensor

are interfaced with the microcontroller as follows:

Figure 4.29: Configuration of Myoware sensor with Arduino uno

57

4.10.3.4 Voltage and current consumption of the system

Component Voltage Current
Arduino Uno 5V 200 mA
Raspberry Pi 4GB 5V 3 A
PCA9685 I2C Board 5V 10 mA per pin
DC-DC Buck Converter Up to 40V 3A maximum
MG995 Servo Motor 4.8-7.2 V 1.5 A at 6V
Myoware 2.0 3.3-5V 9 mA

Table 4.2: Component Specifications

Arduino uno is powered through USB cable connected to the raspberry pi.
Myoware sensors is powered via the 5 V pin of the Arduino. Raspberry pi
requires power delivery from a power due to its high consuming of current (3A)
as well as the servo motors. Raspberry pi maximum input voltage is 5 V and
6V for each servo motor, For the prosthetic arm to be portable the system is
powered via LiPo battery .The input voltage for the I2C board and is controlled
via DC-DC adjustable buck converter, this converter precisely controls the input
voltage into it and give us the required output voltage.

Figure 4.30: LM2596 DC-DC Buck Converter

58

4.10.3.5 Power consumption

Power consumption of the servo motors:
Operating Voltage: 6 V
Operating Current: 3.5 A (stall current) per motor
The supply current of the servo motor on average is 2.5 A.

For 6V supply:

P =V × I = 6V ×2.5A = 12.5W per servo. (4.17)

Total Power Consumption for 6 Servo Motors:

Ptotal = 6×Pservo = 6×12.5W = 75W. (4.18)

Total Current Consumption:

Itotal = 6× I = 6×2.5A = 15A. (4.19)

Power consumption of a PCA9685 I2C board:
Total power consumption of servos:

Ptotal servos = 5×Pservo = 5×12.5W = 62.5W. (4.20)

Assume the PCA9685 board consumes 100 mA at 5V:

PPCA9685 = 5V ×0.1A = 0.5W. (4.21)

59

Power consumption of MG90S Micro Servo Motor:
Voltage: 6V (Let’s assume 5V for calculation)
Current: 0.22A (running), 0.75A (stall)
An average of 0.5 A.
For 5V supply:

P =V × I = 5V ×0.5A = 2.5W. (4.22)

Power consumption of Raspberry Pi 4:
Average current of 1.5 A.

P = 5V ×1.5A = 7.5W (4.23)

Power consumption of Arduino Uno:

P = 5V ×38mA = 190mW (4.24)

Power consumption of Myoware 2.0 sensor:
Operating Voltage: 5V
Current Consumption: 250pA – 1nA = 0.00125 A.
At 5V:

P = 5V ×0.009A = 0.045W per sensor. (4.25)

Total current consumption for 3 sensors:

Itotal = 3× I = 3×0.009A = 0.027A. (4.26)

For a total of three sensors:

PTotal = 0.045W ×3 = 0.135W. (4.27)

60

Component Power consumption (W) Current (A)
5 MG995 Servo Motors 62.5 12.5
1 MG90S Micro Servo 2.5 0.5
PCA9685 I2C Board 0.5 0.1
Raspberry Pi 4 7.5 1.5
Arduino Uno 0.19 0.05
Three Myoware 2.0 Sensors 0.135 0.027
Total 73.32 14.677

Table 4.3: Power Consumption of system

4.10.3.6 Battery calculations

Components and Their Specifications:
MG995 Servo Motors:

• Voltage: 6V

• Current: 1.5A (operating), 3.5A (stall)

• Average operating current: 2.5A each

• Total current for 5 servos:

2.5A×5 = 12.5A

MG90S Micro Servo Motor:

• Voltage: 6V

• Current: 0.5A

Total current drawn by 6 servo motors:

12.5A+0.5A = 13A

61

PCA9685 I2C Board:

• Voltage: 5V

• Current: 0.1A

Raspberry Pi 4:

• Voltage: 5V

• Current: 600mA to 3A

• Average current: 1.5A

Arduino Uno:

• Voltage: 5V

• Current: 0.05A

Three Myoware 2.0 Sensors:

• Voltage: 5V

• Current: 9mA each

• Total for 3 sensors:
9mA×3 = 27mA

Total Current Draw:

ITotal = 13A+0.1A+1.5A+0.05A+0.027A = 14.677A

Battery Capacity Calculation:
Battery Capacity (Wh):

Power(W)×Runtime(hours) = 73.385W ×24hours = 1761.24Wh

62

Battery Capacity (Ah):

Wh
7.5

=
1761.24

7.5
= 234.832Ah

Therefore, we will need a battery with a capacity of approximately 234.8 Ah
at 7.5V to run all these components for 24 hours.

63

CHAPTER FIVE
RESULTS AND DISCUSSION

5.1 DATA SET AND DATA VALIDATION

After detecting the strong signals by using biopac and determining the ges-
tures that will be used, we started recording with myoware 2.0 and discover un-
desired values. In order to compare both raw and envelope datasets to BIOPAC’s
we plotted the normalization of the datasets. This formula sets the variables be-
tween 1 and 0.

Normalized =
X −Xminimum

Xmaximum −Xminimum

Figure 5.1: Myoware Normalized Data 200s Rest-Fist

What was noticed from this was that; there were still high peaks, undesired
values in the datasets, and the sampling rates and frequency of BIOPAC was
different from the Myoware 2.0. As well as we noticed a lot of irregularities
with the myoware data, these were values as high as 4500. The second method
to check our signals was root mean square to calculate the average power of

64

the signals and to analyze the amplitude of the EMG signals to see if there is
a difference and patterns between rest and non-rest. This method was more
efficient since we were dealing with raw data. We took 5s and 10s recording
of each gesture and plotted the rms for 50 samples per gesture.We had to again
adjust the y limits of each sensor for better comparison. These processes had
to be repeated again once the third sensor arrived. These plots can be found in
appendix 3.

RMS =

√
∑

n
i=1 x2

i
N

Figure 5.2: Normalized data,200s rest-fist

While doing these, values that shouldn’t exist got detected. To eliminate
them, a range was used (100¡EMG value¡1024) and for the unusable values, the
program took the previous value. The MATLAB code that was used to plot these
graphs and the graphs can be found in appendix 4. After the examinations of the
plots, it was seen that there are no specific patterns, and while the dataset was
being acquired, some time needed for the graphs to smoothen from gesture to
non-gesture. We tried recording rest for 5 seconds and during non-rest’s third
second returning back to rest. This resulted in much better, consistent plots
found in appendix 5 and a much better accuracy on the AI model. We also
concluded that it was easier to notice the difference between different signals of
different gestures when using envelope data.

65

5.2 AI MODEL

5.2.1 Threshold

In this section, we present the results of our analysis and discuss the implica-
tions of our findings. Initially, we collected datasets from our acquisition system
and labeled them simultaneously, marking each segment as either a gesture or a
rest state in real-time. This approach helped us effectively distinguish between
different states for optimizing our gesture recognition model. To analyze the
data, we applied a windowing technique to segment the continuous EMG signal
into smaller, analyzable windows. We experimented with window sizes of 150
ms, 200 ms, 250 ms, and 300 ms to determine which size provided the most
accurate results for our model. For each window, we calculated its Mean Abso-
lute Value (MAV), which was crucial in establishing a threshold to differentiate
between rest and non-rest states. We employed Youden’s J statistic to determine
the optimal threshold. Youden’s J statistic is used to find the point on the ROC
curve that maximizes the difference between the true positive rate and false pos-
itive rate, effectively optimizing the balance between sensitivity and specificity.
The ROC curve for a 300 ms window size is shown below, where the x-axis
represents the False Positive Rate and the y-axis represents the True Positive
Rate. Using our labeled datasets, we identified True Positives (TP) as instances
where a gesture-labeled window was correctly classified as a gesture, and False
Positives (FP) as instances where a rest-labeled window was incorrectly clas-
sified as a gesture. The optimal threshold value, indicated on the ROC curve,
was selected by identifying the point with the maximum Youden’s J statistic,
thereby maximizing the true positive rate while minimizing the false positive
rate. This allows for an effective separation of gestures from rest periods, lead-
ing to improved classification accuracy in our gesture recognition system. The
curve illustrates the threshold’s performance in distinguishing between rest and
non-rest states, highlighting the optimal value that enhances overall model accu-

66

racy. By calculating the accuracy and confusion matrix on the second part of the

Figure 5.3: ROC Curve for Optimal Threshold Determination

dataset, we were able to validate whether the chosen threshold was effective in
distinguishing between rest and non-rest states. The confusion matrix provides
a detailed breakdown of the model’s performance, showing the number of true
positives, true negatives, false positives, and false negatives. This information
helps evaluate the model’s accuracy, precision, recall, and F1 score, providing
valuable insights into its classification capabilities. The accuracy of the model
was calculated by dividing the sum of true positives and true negatives by the
total number of samples. This metric indicates the overall correctness of the
model’s predictions, reflecting its ability to classify gestures accurately.

Window size (ms) Threshold Accuracy Mean Cross-Validation Accuracy
150 41.03 0.9369 0.9312
200 40.90 0.9284 0.9227
250 40.86 0.9309 0.9250
300 40.90 0.9332 0.9269

Table 5.1: Summary of Threshold, Accuracy, and Cross-Validation Accuracy
for Different Window Sizes

67

The table summarizes the results of different window sizes (150 ms, 200
ms, 250 ms, and 300 ms) used for segmenting EMG signals. For each window
size, the threshold value determined through ROC curve analysis, the validation
set accuracy, and the mean cross-validation accuracy are presented. The table
shows that varying window sizes affect the accuracy and generalizability of the
model, with window sizes of 150 ms and 300 ms yielding the highest validation
set accuracies of 0.9369 and 0.9332, respectively, and mean cross-validation
accuracies of 0.9312 and 0.9269. These results help in selecting the optimal
window size for accurate and efficient gesture recognition.

5.2.1.1 Feature Extraction Delays

Window length 150ms 200ms 250ms 300ms
Delay 8.7721 ms 9.1026 ms 10.1303 ms 9.6674 ms

Table 5.2: Feature Extraction Delays

According to these measurements, these delays indicate the time taken for
the feature extraction process for each window length. We cannot definitively
choose a single window length based solely on the current analysis, these delay
measurements will help us refine our decision in future work. Balancing both
recognition accuracy and processing delay is crucial for efficient and responsive
real-time gesture recognition systems.

5.2.1.2 Models

5.2.1.3 K-Nearest Neighbors Classifier (KNN):

For 150ms Window Size: The kNN classifier was evaluated using differ-
ent parameter settings to determine the best configuration. The cross-validation
accuracies for each parameter setting are listed below: The best kNN cross-
validation accuracy for the 150ms window size was 0.8848. The test accuracy
for this configuration was 0.9063.

68

Figure 5.4: kNN Cross-Validation Accuracies for 150ms Window Size

For 200ms Window Size: The kNN classifier was evaluated using different
parameter settings for the 200ms window size. The cross-validation accuracies
are listed below: The best kNN cross-validation accuracy for the 200ms window

Figure 5.5: kNN Cross-Validation Accuracies for 200ms Window Size

size was 0.9101. The test accuracy for this configuration was 0.9304.
For 250ms Window Size: The kNN classifier was evaluated using different

parameter settings for the 250ms window size. The cross-validation accuracies
are listed below: The best kNN cross-validation accuracy for the 250ms window

Figure 5.6: kNN Cross-Validation Accuracies for 250ms Window Size

size was 0.9205. The test accuracy for this configuration was 0.9390.
For 300ms Window Size: The kNN classifier was evaluated using different

parameter settings for the 300ms window size. The cross-validation accuracies
are listed below: The best kNN cross-validation accuracy for the 300ms window

69

Figure 5.7: kNN Cross-Validation Accuracies for 300ms Window Size

size was 0.9233. The test accuracy for this configuration was 0.9440.
Confusion Matrices

The confusion matrices for each window size are shown below, illustrating the
performance of the kNN model in predicting the gestures:

70

Best Parameters: The best parameters found for the kNN model across all
window sizes were:

• Metric: Euclidean

• Number of Neighbors: 1

• Weights: Uniform

Classifier accuracies for each window length were calculated and plotted below
: Principal Component Analysis (PCA) was also applied in an attempt to re-

Figure 5.8: kNN Accuracy vs Window Length

duce the dimensionality of the feature set and improve the model performance.
However, it was observed that using PCA actually led to a decrease in accuracy.
Therefore, PCA was not utilized in the final model configuration.

71

5.2.1.4 Artificial Neural Network (ANN) Model:

Parameters and Setup
For the ANN model, we experimented with various configurations to optimize
the model’s performance. The key parameters included:

• Number of Hidden Layers: We used 4 hidden layers.

• Neurons per Layer: Each hidden layer had 128 neurons.

• Activation Function: The ReLU activation function was used for the hid-
den layers, and Softmax was used for the output layer.

• Dropout: To prevent overfitting, a dropout rate of 20% was applied after
each hidden layer.

• Batch Normalization: Applied after each hidden layer to normalize the
inputs of each layer.

• Epochs: The model was trained for 300 epochs.

• Batch Size: We used a batch size of 1000.

• Optimizer: Adam optimizer with a learning rate of 0.001.

• Loss Function: Categorical cross-entropy.

Principal Component Analysis (PCA) was also applied to reduce the dimen-
sionality of the feature set before feeding them into the ANN. However, it was
observed that the use of PCA resulted in a lower accuracy. Consequently, PCA
was not utilized in the final ANN model configuration.

72

Figure 5.9: Artificial Neural Network Structure for EMG Signal Classification

73

Results by Window Size
For 150 ms:

• Test Accuracy: 0.8773

• • Classification Report:

For 200 ms:

• Test Accuracy: 0.9048

• • Classification Report:

74

For 250 ms:

• Test Accuracy: 0.9192

• Classification Report:

For 300 ms:

• Test Accuracy: 0.9375

• Classification Report:

These results illustrate how different window sizes impacted the ANN model’s
accuracy and performance metrics. The 300 ms window size yielded the highest
test accuracy, indicating its effectiveness in capturing the necessary features for
gesture classification.

75

The accuracies for each window length were calculated and plotted below :

Figure 5.10: ANN Accuracy vs Window Length

5.2.1.5 Comparison of kNN and ANN Models

In this section, we compare the performance of kNN and ANN models across
different window lengths. The accuracies of both models for window lengths of
150ms, 200ms, 250ms, and 300ms are illustrated in the bar chart below. The
following observations can be made from the chart:

Figure 5.11: kNN vs ANN Accuracy for Different Window Lengths

76

• For the 150ms window length, the kNN model achieved an accuracy of
90.63%, while the ANN model achieved 87.73%.

• At the 200ms window length, kNN performed slightly better with an ac-
curacy of 93.04% compared to ANN’s 90.48%.

• For the 250ms window length, kNN reached 93.90% accuracy, surpassing
the ANN model, which achieved 91.92%.

• At the 300ms window length, kNN continued to perform better with an
accuracy of 94.40%, while ANN achieved 93.75%.

These results indicate that the kNN model generally outperforms the ANN
model across the tested window lengths. However, these accuracy results alone
do not justify the selection of the kNN model for our final implementation. The
critical factor in our decision-making process is the prediction and feature ex-
traction delays, which will be analyzed in the subsequent section. Our analysis
will ensure that we consider not only the accuracy but also the computational
efficiency and real-time applicability of both models. This comprehensive eval-
uation will guide us to choose the most suitable model for our application.

77

5.2.1.6 5.2.3.4 Prediction Delay Comparison between kNN and ANN Models

The bar chart below illustrates the prediction delay for k-Nearest Neighbors
(kNN) and Artificial Neural Network (ANN) models across different window
lengths (150 ms, 200 ms, 250 ms, and 300 ms)

Figure 5.12: ANN vs kNN Prediction Delay for different Window Lengths

5.2.1.7 Key Observations

The ANN model exhibits significantly lower prediction delays compared to
the kNN model for all window lengths. At 150 ms, the ANN prediction de-
lay is 0.1050 ms. At 200 ms, the prediction delay slightly increases to 0.1272
ms. For 250 ms and 300 ms window lengths, the ANN model shows prediction
delays of 0.1140 ms and 0.1111 ms, respectively. Conversely, the kNN model
demonstrates higher prediction delays across all window lengths. At 150 ms,
the kNN prediction delay is 8.2689 ms, which is significantly higher than that
of the ANN model. The delay reduces as the window length increases: 7.3414
ms at 200 ms, 6.2766 ms at 250 ms, and 5.8864 ms at 300 ms. The ANN model
consistently outperforms the kNN model in terms of prediction delay, showcas-
ing much faster prediction times across all tested window lengths. This result
suggests that while kNN might offer competitive accuracy, its prediction speed

78

is notably slower than that of the ANN model. These findings emphasize the im-
portance of considering both accuracy and prediction delay when selecting the
optimal model for real-time applications. Additionally, the use of TensorFlow
Lite for deploying the ANN model demonstrates its efficiency and suitability
for edge devices such as the Raspberry Pi, enabling low-latency predictions in
resource-constrained environments. This is particularly useful for applications
requiring real-time processing and quick response times.
Voting:
To smooth class decisions, postprocessing techniques were employed for win-
dow lengths of 150ms, 200ms, 250ms, and 300ms. Longer window lengths were
less likely to overwhelm actuators due to increased prediction delays.

Majority Voting: Feature extraction and prediction delays were consistent
across different window sizes, so classifier accuracies determined the number of
decisions used in Majority Voting for each classification algorithm. To ensure
robust decision-making, we used 150 votes. Both Feedforward ANN and kNN
classifiers demonstrated high accuracy levels. Feedforward ANN was preferred
for its accuracy and shorter prediction delay. The table below shows suitable
classifiers, window sizes, accuracy per vote, and total delay combinations.

Figure 5.13: Classifier Accuracy and Total Delay for Different Window Lengths

79

The kNN model generally exhibited higher accuracy compared to the ANN
model across all window lengths. For the 300ms window length, the accu-
racy difference between kNN (0.9440) and ANN (0.9375) is minimal, indicating
both models perform well at this window length. The ANN model consistently
demonstrated lower total delays compared to the kNN model at all window
lengths. For the 300ms window, the ANN model had a total delay of 46467.0
ms, which is significantly lower than the kNN model’s total delay of 47334.0 ms.
The ANN model with a 300ms window length offers a high accuracy of 0.9375,
which is very close to the highest accuracy observed in this study. Lower total
delays with the ANN model enhance real-time performance, crucial for appli-
cations requiring quick responses. Additionally, ANN models, especially with
TensorFlow Lite, are well-suited for deployment on edge devices like the Rasp-
berry Pi, which is advantageous for embedded system applications. Based on
these findings, the ANN model with a 300ms window length is selected as the
optimal model due to its balance of high accuracy and low total delay, coupled
with its suitability for real-time applications and edge device deployment.

80

CHAPTER SIX
CONCLUSION & FUTURE WORK

In conclusion, we have achieved our aim in which an AI Prosthetic hand
through surface electromyography has been developed. Our analysis revealed
that the Artificial Neural Network (ANN) model with a 300ms window length
is optimal for gesture recognition due to its high accuracy of 93.75Countless
engineering challenges had to be analysed and solved in order to achieve our
aim. Due to time constraints as full-time students it is needless to say that many
things could have been improved in this project to improve the Prosthetic hand’s
functionality and features, to name a few: - Flex sensors to enable grabbing ob-
jects - Eliminating the Arduino Uno and finding a more efficient microprocessor
- Size Factor of Servo motors used - Accuracy of the system - More customiz-
able design to fit patient’s limb

To conclude, our team is more confident than ever tackling the engineering
challenges with making a prosthetic hand. Since the team has completed the
project, a lot of ideas were realized and a sense of being comfortable developing
this project has grown on us.

81

APPENDIX

Code Block 6.0.1: Arduino Code For EMG Sampling

1 #include <MyoWare.h>

2

3 const long samples = 1000000; // number of samples

4

5 // MyoWare class object

6 MyoWare myoware;

7

8 void setup()

9 {

10 Serial.begin (115200);

11 while (! Serial);

12 Serial.println('Sampling Test');

13 Serial.println('------------------------------');

14 // when a

central is connected

15 }

16

17 void loop()

18 {

19 // initialize variables

20 int testValue = 0;

21

22 digitalWrite(myoware.getStatusLEDPin (), HIGH);

23 Serial.println('Start Time:\t' + String(micros ()) + '

microsec ');

24

25

26 unsigned long startMicros = micros (); // variable for

starting time in microseconds

27 for (long i = 0; i < samples; i++)

28 {

29

30 channel1 = analogRead(A0); //Raw Sensor 1

31 delayMicroseconds (5); //Used to wait for ADC to settle

32 channel2 = analogRead(A1); //Raw Sensor 2

33 delayMicroseconds (5);

82

34 channel3 = analogRead(A2); //Raw Sensor 3

35

36 sprintf(buffer , '%d,%d,%d', channel1 , channel2 ,

channel3);

37 delayMicroseconds (290);

38

39 }

40 const unsigned long endMicros = micros ();

41

42 Serial.println('Finish Time:\t' + String(endMicros) + '

microsec ');

43 digitalWrite(myoware.getStatusLEDPin (), LOW);

44

45 const double secondsPerSample = (endMicros - startMicros)

/ samples;

46

47 Serial.println('Sampling Rate:\t' + String ((1.0 /

secondsPerSample) * 1000000) + ' Hz');

48 Serial.println('------------------------------');

49 delay (1000);

50 }

51

52

53

54

The system was then adjusted to 1000Hz

Code Block 6.0.2: Arduino Code For EMG Sampling

1 char buffer [40]; // Buffer used to store all the values for

sprintF Function

2

3 void setup() {

4 Serial.begin (115200); //Fast Serial Communication

Established

5 }

6

7 int channel1;

83

8 int channel2;

9 int channel3;

10 int endTime;

11

12 void loop() {

13 if (Serial.available () > 0) {

14 String command = Serial.readStringUntil('\n');

15 command.trim(); // Checks for Start Signal from Python

program

16 if (command == 'START ') {

17 recordData ();

18 }

19 }

20 }

21

22 void recordData () {

23 endTime = millis () + 5000;

24 while (millis () < endTime) {

25 channel1 = analogRead(A0); //Raw Sensor 1

26 delayMicroseconds (5); //Used to wait for ADC to settle

27 channel2 = analogRead(A1); //Raw Sensor 2

28 delayMicroseconds (5);

29 channel3 = analogRead(A2); //Raw Sensor 3

30

31 sprintf(buffer , '%d,%d,%d', channel1 , channel2 ,

channel3);

32 delayMicroseconds (290);

33 }

34 Serial.println('STOP'); // Stop command sent to Python

Program to signal finishing the sampling of 5 secs

35

36

37

38

84

APPENDIX II

Code Block 6.0.3: EMG Data Collection Script

1 import serial

2 import time

3 import csv

4 from time import sleep

5 # Set the serial port and baud rate

6 SERIAL_PORT = 'COM4'

7 BAUD_RATE = 115200

8 # Initialize the serial connection

9 ser = serial.Serial(SERIAL_PORT , BAUD_RATE)

10 class colors:

11 RESET = '\033[0m'

12 RED = '\033[91m'

13 GREEN = '\033[92m'

14 # Function to get user input for person ID and gender

15 def get_user_info ():

16 person_id = input('Enter the Person ID: ')

17 gender = input('Enter the Gender (Male/Female): ')

18 return person_id , gender

19 # Initialize the error counter

20 error_count = 0

21 # Define a function to record data for a specified duration

with a stopwatch

22 def record_period(duration , label , round_number , gesture_name ,

writer , person_id , gender):

23 global error_count

24 print(f'{colors.GREEN}Start in 2 seconds{colors.RESET}')

25 sleep (2) # Give time to prepare before recording starts

26 print(f'{colors.RED}Recording {label} for {gesture_name}, Round

{round_number }.{ colors.RESET}')

27 # Send start command to Arduino

28 ser.write(b'START\n')

29

30 start_time = time.time() # Record the start time

31 while True:

32 line = ser.readline ().decode('utf -8').strip ()

33 if line == 'STOP':

85

34 break

35 if line:

36 sensorValues = line.split(',')

37 if len(sensorValues) >= 3:

38 try:

39 sensorValue1 = int(sensorValues [0])

40 sensorValue2 = int(sensorValues [1])

41 sensorValue3 = int(sensorValues [2])

42 elapsed_time = time.time() - start_time # Calculate elapsed

time

43 elapsed_time_str = f'{elapsed_time :.6f}' # Format elapsed time

to 6 decimal places for microseconds

44 writer.writerow ([elapsed_time_str , sensorValue1 , sensorValue2 ,

sensorValue3 , label , round_number , gesture_name , person_id ,

gender])

45 except ValueError:

46 print('Error parsing sensor values: Skipping

this line.')

47 error_count += 1 # Increment the error counter

48 else:

49 print('Incomplete data received , skipping ...')

50 else:

51 print('Empty line received , skipping ...')

52 def main():

53 global error_count

54 # Open a CSV file to store the data

55 person_id , gender = get_user_info ()

56 with open('emg_data.csv', 'w', newline='') as csvfile:

57 writer = csv.writer(csvfile)

58 writer.writerow (['Elapsed Time (s)', 'Sensor1 ', 'Sensor2 ', 'Sensor3

', 'Label ', 'Round ', 'Gesture ', 'Person ID', 'Gender '])

59 gestures = ['Fist','Thumb Finger ','Index Finger ','Scissors ','Paper '

,'Three ','Four','Okay','Finger Gun']

60 GESTURE_DURATION = 5 # duration for each gesture recording in

seconds

61 SHORT_REST = 10 # short rest between rounds in seconds

62

63 for gesture_name in gestures:

64 input(f'Press Enter to start sequence for {gesture_name} or Ctrl+C

to exit.')

86

65 for round_number in range(1, 5):

66 for _ in range (5):

67 record_period(GESTURE_DURATION , 'Rest', round_number , 'Rest',

writer , person_id , gender)

68 record_period(GESTURE_DURATION , 'Non -Rest', round_number ,

gesture_name , writer , person_id , gender)

69 if round_number < 4:

70 print(f'Short rest of {SHORT_REST} seconds.')

71 sleep(SHORT_REST)

72

73 if gesture_name \!= gestures [-1]:

74 print('Long rest of 3 minutes until next gesture.')

75 sleep (120)

76 print('1 min Remaining ')

77 sleep (60)

78

79 print('Data collection complete for all gestures.Processing data.')

80 print('..... ')

81 print('Rename CSV File for current patient so the data doesn't get

overwritten with the next patient 's data')

82 print(f'Total parsing errors encountered: {error_count}')

83 if _name_ == '_main_ ':

84 main()

85

86

87

APPENDIX III

Code Block 6.0.4: Data Normalization

1 myo=table2array(emg);

2

3 myoware_data2=myo (206185:220515 ,2);

4 myoware_data3=myo (206185:220515 ,3);

5 myoware_data1=myo (206185:220515 ,1);

6

7

8 for j=1: length(myoware_data2)

9 if (myoware_data2(j) >1024|| myoware_data2(j) <100)

10 myoware_data2(j)=myoware_data2(j-1);

11

12 end

13 if (myoware_data1(j) >1024|| myoware_data1(j) <100)

14 myoware_data1(j)=myoware_data1(j-1);

15

16 end

17

18 if (myoware_data3(j) >1024|| myoware_data3(j) <100)

19 myoware_data3(j)=myoware_data3(j-1);

20

21 end

22 end

23

24 segment_length =50;

25

26 numsegments1=floor(length(myoware_data1)/(segment_length)); %

calculates the number of segments

27

28 rmsvalues1=zeros(1, numsegments1) % array to store rms values for

each segment

29

30 %calculates the rms for each segment

31 for i = 1: numsegments1

32

33 startIndex = (i - 1) * (segment_length) + 1;

34 endIndex = startIndex + segment_length - 1;

88

35 segment_Data1= myoware_data1(startIndex:endIndex);

36 rmsvalues1(i) = rms(segment_Data1);

37 end

38

39

40 figure;

41

42 plot(rmsvalues1)

43 xlabel('Time(samples)')

44 ylabel('rms')

45 title('RMS values of 50 samples for 1 round fist -rest -sensor 1')

46 %%

47 numsegments2=floor(length(myoware_data2)/(segment_length)); %

calculates the number of segments

48 %%numsegments1 =2504635;

49

50 rmsvalues2=zeros(1, numsegments2) % array to store rms values for

each segment

51

52 %calculates the rms for each segment

53 for t = 1: numsegments2

54

55 startIndex2 = (t - 1) * (segment_length) + 1;

56 endIndex2 = startIndex2 + segment_length - 1;

57 segment_Data2= myoware_data2(startIndex2:endIndex2);

58 rmsvalues2(t) = rms(segment_Data2);

59 end

60

61

62 figure;

63

64 plot(rmsvalues2 ,'r')

65 xlabel('Time(samples)')

66 ylabel('rms')

67 title('RMS values of 50 samples for 10s Finger Gun -sensor2 ')

68 %%

69

70 numsegments3=floor(length(myoware_data3)/(segment_length)); %

calculates the number of segments

71

89

72 rmsvalues3=zeros(1, numsegments3) % array to store rms values for

each segment

73

74 %calculates the rms for each segment

75 for k = 1: numsegments3

76

77 startIndex3 = (k - 1) * (segment_length) + 1;

78 endIndex3 = startIndex3 + segment_length - 1;

79 segment_Data3= myoware_data3(startIndex3:endIndex3);

80 rmsvalues3(k) = rms(segment_Data3);

81 end

82

83

84 figure;

85

86 plot(rmsvalues3 ,'g')

87 xlabel('Time(samples)')

88 ylabel('rms')

89 title('RMS values of 50 samples for 10s Finger Gun -sensor3 ')

90

91

90

APPENDIX IV

Code Block 6.0.5: AI MODEL

1 import serial

2 import time

3 import numpy as np

4 import pandas as pd

5 from scipy.signal import welch

6 from scipy.stats import skew

7 import tensorflow as tf

8 import joblib

9 from sklearn.preprocessing import LabelEncoder

10 from collections import deque

11 import RPi.GPIO as GPIO

12 from time import sleep

13 from adafruit_servokit import ServoKit

14

15 SERIAL_PORT = '/dev/ttyUSB0 '

16 BAUD_RATE = 115200

17

18 GPIO.setmode(GPIO.BCM)

19 GPIO.setwarnings(False)

20 COMMAND_PIN = 21

21 GPIO.setup(COMMAND_PIN , GPIO.OUT)

22

23 ser = serial.Serial(SERIAL_PORT , BAUD_RATE)

24 time.sleep (2)

25

26 interpreter = tf.lite.Interpreter(model_path='/home/picap/Desktop/

m1.tflite ')

27 interpreter.allocate_tensors ()

28 input_details = interpreter.get_input_details ()

29 output_details = interpreter.get_output_details ()

30 scaler = joblib.load(r'/home/picap/Desktop/s1.pkl')

31

32 vote_queue = deque(maxlen =100)

33 label_encoder = LabelEncoder ()

34 unique_labels = ['Rest', 'Fist', 'Paper ', 'Okay']

35 label_encoder.fit(unique_labels)

91

36 last_voted_prediction = None

37

38 buffer = []

39 fs = 1070 # Sampling frequency

40 window_length = int (0.30 * fs) # 300 ms window

41 increment = int (0.030 * fs) # 30 ms increment

42 threshold = 40.90

43 ThumbFinger = 0

44 IndexFinger = 1

45 MiddleFinger = 2

46 RingFinger = 3

47 PinkyFinger = 4

48 Thumb_Extension = 5

49 kit = ServoKit(channels =8)

50 dl = 4

51 for i in range (5):

52 kit.servo[i]. set_pulse_width_range (500, 2500)

53 kit.servo [5]. set_pulse_width_range (500, 2400)

54

55 def RestGesture ():

56 kit.servo[ThumbFinger]. angle = 30

57 kit.servo[IndexFinger]. angle = 30

58 kit.servo[MiddleFinger]. angle = 30

59 kit.servo[RingFinger]. angle = 30

60 kit.servo[PinkyFinger]. angle = 30

61 kit.servo[Thumb_Extension]=0

62 time.sleep (1)

63

64 def FistGesture ():

65 kit.servo[ThumbFinger]. angle = 180

66 kit.servo[IndexFinger]. angle = 180

67 kit.servo[MiddleFinger]. angle = 180

68 kit.servo[RingFinger]. angle = 180

69 kit.servo[PinkyFinger]. angle = 180

70 kit.servo[Thumb_Extension]= 90

71 time.sleep(dl)

72 RestGesture ()

73

74 def PaperGesture ():

75 kit.servo[ThumbFinger]. angle = 0

92

76 kit.servo[IndexFinger]. angle = 0

77 kit.servo[MiddleFinger]. angle = 0

78 kit.servo[RingFinger]. angle = 0

79 kit.servo[PinkyFinger]. angle = 0

80 kit.servo[Thumb_Extension]= 90

81 time.sleep(dl)

82 RestGesture ()

83

84 def OkayGesture ():

85 kit.servo[ThumbFinger]. angle = 180

86 kit.servo[IndexFinger]. angle = 180

87 kit.servo[MiddleFinger]. angle = 0

88 kit.servo[RingFinger]. angle = 0

89 kit.servo[PinkyFinger]. angle = 0

90 kit.servo[ThumbExtension]. angle = 0

91 time.sleep(dl)

92 RestGesture ()

93

94 def calculate_mav(segment):

95 mav_sensor1 = np.mean(np.abs(segment[:, 0]))

96 mav_sensor2 = np.mean(np.abs(segment[:, 1]))

97 mav_sensor3 = np.mean(np.abs(segment[:, 2]))

98 return (mav_sensor1 + mav_sensor2 + mav_sensor3) / 3

99

100 def calculate_features(segment):

101 features = {}

102

103 ssc_threshold = 0.01

104 features['SSC Sensor1 '] = ((np.diff(segment[:, 0][: -1]) * np.

diff(segment[:, 0][1:]) < 0) &

105 (np.abs(np.diff(segment[:, 0][: -1]) -

np.diff(segment[:, 0][1:])) >= ssc_threshold)).sum()

106 features['SSC Sensor2 '] = ((np.diff(segment[:, 1][: -1]) * np.

diff(segment[:, 1][1:]) < 0) &

107 (np.abs(np.diff(segment[:, 1][: -1]) -

np.diff(segment[:, 1][1:])) >= ssc_threshold)).sum()

108 features['SSC Sensor3 '] = ((np.diff(segment[:, 2][: -1]) * np.

diff(segment[:, 2][1:]) < 0) &

109 (np.abs(np.diff(segment[:, 2][: -1]) -

np.diff(segment[:, 2][1:])) >= ssc_threshold)).sum()

93

110

111 features['RMS Sensor1 '] = np.sqrt(np.mean(segment[:, 0]**2))

112 features['RMS Sensor2 '] = np.sqrt(np.mean(segment[:, 1]**2))

113 features['RMS Sensor3 '] = np.sqrt(np.mean(segment[:, 2]**2))

114

115 features['WL Sensor1 '] = np.sum(np.abs(np.diff(segment[:, 0])))

116 features['WL Sensor2 '] = np.sum(np.abs(np.diff(segment[:, 1])))

117 features['WL Sensor3 '] = np.sum(np.abs(np.diff(segment[:, 2])))

118

119 features['Skewness Sensor1 '] = skew(segment[:, 0])

120 features['Skewness Sensor2 '] = skew(segment[:, 1])

121 features['Skewness Sensor3 '] = skew(segment[:, 2])

122

123 features['Log Detector Sensor1 '] = np.exp(np.mean(np.log(np.abs

(segment[:, 0]) + 1e-10)))

124 features['Log Detector Sensor2 '] = np.exp(np.mean(np.log(np.abs

(segment[:, 1]) + 1e-10)))

125 features['Log Detector Sensor3 '] = np.exp(np.mean(np.log(np.abs

(segment[:, 2]) + 1e-10)))

126

127 features['TM4 Sensor1 '] = np.mean((segment[:, 0] - np.mean(

segment[:, 0]))**4)

128 features['TM4 Sensor2 '] = np.mean((segment[:, 1] - np.mean(

segment[:, 1]))**4)

129 features['TM4 Sensor3 '] = np.mean((segment[:, 2] - np.mean(

segment[:, 2]))**4)

130

131 def hjorth_params(signal):

132 first_deriv = np.diff(signal)

133 second_deriv = np.diff(first_deriv)

134 var_zero = np.var(signal)

135 var_d1 = np.var(first_deriv)

136 var_d2 = np.var(second_deriv)

137 activity = var_zero

138 mobility = np.sqrt(var_d1 / var_zero)

139 complexity = np.sqrt(var_d2 / var_d1) / mobility

140 return mobility , complexity

141

142 features['Hjorth Mobility Sensor1 '], features['Hjorth

Complexity Sensor1 '] = hjorth_params(segment[:, 0])

94

143 features['Hjorth Mobility Sensor2 '], features['Hjorth

Complexity Sensor2 '] = hjorth_params(segment[:, 1])

144 features['Hjorth Mobility Sensor3 '], features['Hjorth

Complexity Sensor3 '] = hjorth_params(segment[:, 2])

145

146 def frequency_features(signal , fs):

147 f, Pxx = welch(signal , fs , nperseg=min(256, len(signal)))

148 total_power = np.sum(Pxx)

149 mean_freq = np.sum(f * Pxx) / total_power if total_power !=

0 else 0

150 return mean_freq

151

152 features['MNF Sensor1 '] = frequency_features(segment[:, 0], fs)

153 features['MNF Sensor2 '] = frequency_features(segment[:, 1], fs)

154 features['MNF Sensor3 '] = frequency_features(segment[:, 2], fs)

155

156 return features

157

158 print('System initialized ')

159 while True:

160 try:

161 line = ser.readline ().decode('utf -8').strip()

162 if line == 'STOP':

163 continue

164 if line:

165 sample = list(map(int , line.split(',')))

166 buffer.append(sample)

167

168 if len(buffer) >= window_length:

169 segment_data = np.array(buffer [: window_length])

170 buffer = buffer[increment :]

171

172 mav_average = calculate_mav(segment_data)

173

174 if mav_average < threshold:

175 pred_label = 'Rest'

176 else:

177 features = calculate_features(segment_data)

178 X_test = pd.DataFrame ([features]).values

179 X_test_scaled = scaler.transform(X_test)

95

180

181 interpreter.set_tensor(input_details [0]['index '],

X_test_scaled.astype(np.float32))

182 interpreter.invoke ()

183 output_data = interpreter.get_tensor(output_details

[0]['index '])

184 y_pred_class = np.argmax(output_data , axis =1) [0]

185

186 pred_label = label_encoder.inverse_transform ([

y_pred_class])[0]

187

188 print(f'Predicted Gesture: {pred_label}')

189

190 if pred_label == 'Rest':

191 RestGesture ()

192 elif pred_label == 'Fist':

193 FistGesture ()

194 elif pred_label == 'Paper ':

195 PaperGesture ()

196 elif pred_label == 'Okay':

197 OkayGesture ()

198

199 GPIO.output(COMMAND_PIN , GPIO.LOW)

200

201 except KeyboardInterrupt:

202 break

203 except Exception as e:

204 print(f'Error: {e}')

205

206 ser.close()

207 GPIO.cleanup ()

208

209

96

	Introduction
	Literature Review
	EMG signals
	EMG signal acquisition:

	REALISTIC CONSTRAINTS
	Design Constraints
	Engineering Standards and Lifelong Learning
	Economical Analysis
	Sustainability
	Ethical Issues
	Social and Political Issues
	Manufacturability
	Risk Management and Change Management
	Usage Constraints
	Cost Analysis

	METHODOLOGY
	Acquisition System
	Design
	Output Validation

	Data Acquisition
	Anatomical Background
	Gesture Selection

	AI Model
	Control Configurations
	Direct Control
	Pattern Recognition

	Data Preprocessing
	Windowing
	Threshold Function
	Feature Extraction
	 Feature Normalization

	Models
	K-Nearest Neighbors (kNN)
	 Artificial Neural Network (ANN):

	Voting Mechanism
	Evaluation Metrics
	 Software and Libraries Utilized
	Design and Implementation
	Design and control
	Control mechanisms
	3D Design
	Actuators and controllers

	RESULTS AND DISCUSSION
	Data Set and Data Validation
	AI Model
	Threshold

	CONCLUSION & FUTURE WORK

